Table Of Contents

1. General information ... 9
 1.1. Structural elements ... 9
 1.2. Begin and completion of a module .. 9
 1.3. Module versions .. 9
 1.4. General and partial examinations ... 9
 1.5. Types of examinations ... 10
 1.6. Repeating examinations .. 10
 1.7. Examiners ... 10
 1.8. Additional accomplishments ... 10
 1.9. Further information .. 10
 1.10. Contact ... 10

2. Study plan .. 11

3. New study plan as of winter semester 2021/2022 .. 12

4. Qualification objectives of the Bachelor’s degree in Industrial Engineering and Management ... 13

5. Key Skills .. 14

6. Field of study structure .. 15
 6.1. Preliminary Exam .. 15
 6.2. Bachelor’s Thesis ... 15
 6.3. Internship ... 15
 6.4. Business Administration ... 16
 6.5. Economics .. 16
 6.6. Informatics ... 16
 6.7. Operations Research .. 17
 6.8. Engineering Sciences ... 17
 6.9. Mathematics .. 18
 6.10. Statistics ... 18
 6.11. Compulsory Elective Modules ... 19

7. Modules ... 23
 7.2. Advanced Macroeconomics - M-WIWI-106472 .. 24
 7.3. Applications of Operations Research - M-WIWI-101413 .. 25
 7.4. Applied Informatics - M-WIWI-105112 .. 27
 7.5. Applied Microeconomics - M-WIWI-101499 .. 28
 7.6. Automotive Engineering - M-MACH-101266 ... 29
 7.7. Combustion Engines I - M-MACH-101275 ... 31
 7.8. Combustion Engines II - M-MACH-101303 .. 32
 7.9. Control Engineering - M-ETIT-101156 ... 34
 7.10. eBusiness and Service Management - M-WIWI-101434 .. 35
 7.11. Economic Policy I - M-WIWI-101668 ... 37
 7.13. eFinance - M-WIWI-101402 .. 39
 7.15. Electrical Engineering - M-ETIT-101155 ... 42
 7.16. Emphasis in Fundamentals of Engineering - M-MACH-101261 43
 7.17. Emphasis Materials Science - M-MACH-101262 .. 44
 7.18. Energy Economics - M-WIWI-101464 .. 45
 7.20. Essentials of Finance - M-WIWI-101435 .. 47
 7.22. Financial Economics - M-WIWI-103120 .. 49
 7.23. Financing and Accounting - M-WIWI-105769 ... 50
 7.24. Foundations of Informatics - M-WIWI-101417 ... 51
 7.25. Foundations of Marketing - M-WIWI-101424 ... 52
 7.27. Fundamentals of Digital Service Systems - M-WIWI-102752 55
 7.28. Handling Characteristics of Motor Vehicles - M-MACH-101264 56
8. Courses

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td>T-WIWI-111127</td>
</tr>
<tr>
<td>8.2. Advanced Lab Informatics (Bachelor)</td>
<td>T-WIWI-110541</td>
</tr>
<tr>
<td>8.3. Advanced Lab Realization of Innovative Services (Bachelor)</td>
<td>T-WIWI-112915</td>
</tr>
<tr>
<td>8.4. Advanced Lab Security, Usability and Society</td>
<td>T-WIWI-108439</td>
</tr>
<tr>
<td>8.5. Advanced Lab Sociotechnical Information Systems Development (Bachelor)</td>
<td>T-WIWI-111124</td>
</tr>
<tr>
<td>8.6. Advanced Programming - Application of Business Software</td>
<td>T-WIWI-102748</td>
</tr>
<tr>
<td>8.7. Advanced Programming - Java Network Programming</td>
<td>T-WIWI-102747</td>
</tr>
<tr>
<td>8.8. Advanced Topics in Economic Theory</td>
<td>T-WIWI-102609</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>T-GEISTSOZ-109047</td>
<td>Analysis of Social Structures (WiWi)</td>
</tr>
<tr>
<td>T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
</tr>
<tr>
<td>T-WIWI-103063</td>
<td>Analysis of Multivariate Data</td>
</tr>
<tr>
<td>T-MACH-105167</td>
<td>Analysis Tools for Combustion Diagnostics</td>
</tr>
<tr>
<td>T-WIWI-110340</td>
<td>Applied Informatics - Applications of Artificial Intelligence</td>
</tr>
<tr>
<td>T-WIWI-110341</td>
<td>Applied Informatics - Database Systems</td>
</tr>
<tr>
<td>T-WIWI-110342</td>
<td>Applied Informatics - Information Security</td>
</tr>
<tr>
<td>T-WIWI-110338</td>
<td>Applied Informatics - Modelling</td>
</tr>
<tr>
<td>T-WIWI-110339</td>
<td>Applied Informatics - Principles of Internet Computing: Foundations</td>
</tr>
<tr>
<td>T-WIWI-110343</td>
<td>Applied Informatics - Software Engineering</td>
</tr>
<tr>
<td>T-MACH-112115</td>
<td>Artificial Intelligence in Production</td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
</tr>
<tr>
<td>T-MACH-102203</td>
<td>Automotive Engineering I</td>
</tr>
<tr>
<td>T-MACH-100092</td>
<td>Automotive Engineering I</td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Automotive Engineering II</td>
</tr>
<tr>
<td>T-WIWI-111367</td>
<td>B2B Sales Management</td>
</tr>
<tr>
<td>T-WIWI-103067</td>
<td>Bachelor's Thesis</td>
</tr>
<tr>
<td>T-WIWI-103213</td>
<td>Basic Principles of Economic Policy</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
</tr>
<tr>
<td>T-MACH-109920</td>
<td>Basics of Technical Logistics II</td>
</tr>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
</tr>
<tr>
<td>T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
</tr>
<tr>
<td>T-MACH-105649</td>
<td>Boosting of Combustion Engines</td>
</tr>
<tr>
<td>T-WIWI-112156</td>
<td>Brand Management</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
</tr>
<tr>
<td>T-MACH-102187</td>
<td>CAD-NX Training Course</td>
</tr>
<tr>
<td>T-INFO-103339</td>
<td>Civil Law for Beginners</td>
</tr>
<tr>
<td>T-PHYS-101092</td>
<td>Climatology</td>
</tr>
<tr>
<td>T-MACH-111550</td>
<td>CO2-Neutral Combustion Engines and their Fuels I</td>
</tr>
<tr>
<td>T-MACH-111560</td>
<td>CO2-Neutral Combustion Engines and their Fuels II</td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
</tr>
<tr>
<td>T-ETIT-109285</td>
<td>Complex Analysis and Integral Transformations</td>
</tr>
<tr>
<td>T-WIWI-112723</td>
<td>Computational Macroeconomics</td>
</tr>
<tr>
<td>T-WIWI-102878</td>
<td>Computational Risk and Asset Management</td>
</tr>
<tr>
<td>T-MACH-102141</td>
<td>Constitution and Properties of Wear Resistant Materials</td>
</tr>
<tr>
<td>T-BGU-101691</td>
<td>Construction Technology</td>
</tr>
<tr>
<td>T-WIWI-106569</td>
<td>Consumer Behavior</td>
</tr>
<tr>
<td>T-MACH-111821</td>
<td>Control of Mobile Machines</td>
</tr>
<tr>
<td>T-MACH-111820</td>
<td>Control of Mobile Machines - Prerequisites</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Control Technology</td>
</tr>
<tr>
<td>T-MACH-102135</td>
<td>Conveying Technology and Logistics</td>
</tr>
<tr>
<td>T-MACH-112126</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
</tr>
<tr>
<td>T-WIWI-102792</td>
<td>Decision Theory</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
</tr>
<tr>
<td>T-MACH-105311</td>
<td>Design and Development of Mobile Machines</td>
</tr>
<tr>
<td>T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
</tr>
<tr>
<td>T-MACH-111283</td>
<td>Development Methods of Technical Systems</td>
</tr>
<tr>
<td>T-MACH-110817</td>
<td>Development of Hybrid Drivetrains</td>
</tr>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
</tr>
<tr>
<td>T-WIWI-112228</td>
<td>Digital Markets and Market Design</td>
</tr>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services; Foundations</td>
</tr>
<tr>
<td>T-MACH-110176</td>
<td>Digitalization from Production to the Customer in the Optical Industry</td>
</tr>
<tr>
<td>T-MACH-105307</td>
<td>Drive Train of Mobile Machines</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
</tr>
<tr>
<td>T-WIWI-102708</td>
<td>Economics I: Microeconomics</td>
</tr>
<tr>
<td>T-WIWI-102709</td>
<td>Economics II: Macroeconomics</td>
</tr>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
Table Of Contents

8.68. Electric Energy Systems - T-ETIT-101923 ... 236
8.69. Electrical Engineering for Business Engineers, Part I - T-ETIT-100533 237
8.70. Electrical Engineering for Business Engineers, Part II - T-ETIT-100534 238
8.71. Energy Policy - T-WIWI-102607 .. 239
8.72. Engine Measurement Techniques - T-MACH-105169 .. 240
8.73. Exam on Climatology - T-PHYS-105594 .. 241
8.74. Facility Location and Strategic Supply Chain Management - T-WIWI-102704 242
8.75. Failure of Structural Materials: Deformation and Fracture - T-MACH-102140 243
8.76. Failure of Structural Materials: Fatigue and Creep - T-MACH-102139 245
8.77. Financial Accounting for Global Firms - T-WIWI-107505 .. 247
8.78. Financial Econometrics - T-WIWI-103064 .. 248
8.79. Financial Econometrics II - T-WIWI-110939 .. 250
8.80. Financial Intermediation - T-WIWI-102623 ... 251
8.81. Financial Management - T-WIWI-102605 .. 252
8.82. FinTech - T-WIWI-112694 ... 253
8.83. Fluid Power Systems - T-MACH-102093 ... 254
8.84. Foundations of Informatics I - T-WIWI-102749 ... 255
8.85. Foundations of Informatics II - T-WIWI-102707 .. 257
8.86. Foundations of Interactive Systems - T-WIWI-109816 ... 259
8.87. Foundations of Mobile Business - T-WIWI-104679 .. 261
8.88. Fuels and Lubricants for Combustion Engines - T-MACH-105184 263
8.89. Functional Ceramics - T-MACH-105179 ... 264
8.90. Fundamentals for Design of Motor-Vehicle Bodies I - T-MACH-102116 265
8.91. Fundamentals for Design of Motor-Vehicle Bodies II - T-MACH-102119 267
8.92. Fundamentals in the Development of Commercial Vehicles - T-MACH-111389 269
8.93. Fundamentals of Automobile Development I - T-MACH-105162 272
8.94. Fundamentals of Automobile Development II - T-MACH-105163 274
8.95. Fundamentals of Catalytic Exhaust Gas Aftertreatment - T-MACH-105044 276
8.96. Fundamentals of Production Management - T-WIWI-102606 277
8.97. Gear Cutting Technology - T-MACH-102148 .. 278
8.98. Geological Hazards and Risk - T-PHYS-103525 ... 280
8.99. Global Optimization I - T-WIWI-102726 ... 281
8.100. Global Optimization I and II - T-WIWI-103638 ... 283
8.101. Global Optimization II - T-WIWI-102727 ... 286
8.102. Global Production - T-MACH-110991 .. 288
8.103. Handling Characteristics of Motor Vehicles I - T-MACH-105152 290
8.104. Handling Characteristics of Motor Vehicles II - T-MACH-105153 292
8.110. I4.0 Systems Platform - T-MACH-106457 ... 299
8.111. Ignition Systems - T-MACH-105985 ... 301
8.112. Industrial Organization - T-WIWI-102844 ... 302
8.113. Information Engineering - T-MACH-102209 .. 303
8.114. Integrated Information Systems for Engineers - T-MACH-102083 304
8.115. Integrated Production Planning in the Age of Industry 4.0 - T-MACH-109054 306
8.117. International Finance - T-WIWI-102646 ... 310
8.118. Internship - T-WIWI-102611 ... 311
8.119. Introduction to Bionics - T-MACH-111807 ... 312
8.120. Introduction to Ceramics - T-MACH-100287 ... 313
8.121. Introduction to Energy Economics - T-WIWI-102746 .. 314
8.122. Introduction to Engineering Geology - T-BGU-101500 .. 315
8.125. Introduction to Finance and Accounting - T-WIWI-112820 318
8.126. Introduction to Game Theory - T-WIWI-102850 ... 319
8.127. Introduction to GIS for Students of Natural, Engineering and Geo Sciences - T-BGU-101681 321
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.128</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite - T-BGU-103541</td>
<td>322</td>
</tr>
<tr>
<td>8.129</td>
<td>Introduction to Machine Learning - T-WIWI-111028</td>
<td>323</td>
</tr>
<tr>
<td>8.130</td>
<td>Introduction to Microsystem Technology - Practical Course - T-MACH-108312</td>
<td>324</td>
</tr>
<tr>
<td>8.131</td>
<td>Introduction to Microsystem Technology I - T-MACH-105182</td>
<td>326</td>
</tr>
<tr>
<td>8.132</td>
<td>Introduction to Microsystem Technology II - T-MACH-105183</td>
<td>327</td>
</tr>
<tr>
<td>8.133</td>
<td>Introduction to Neural Networks and Genetic Algorithms - T-WIWI-111029</td>
<td>328</td>
</tr>
<tr>
<td>8.134</td>
<td>Introduction to Operations Research I and II - T-WIWI-102758</td>
<td>329</td>
</tr>
<tr>
<td>8.135</td>
<td>Introduction to Programming with Java - T-WIWI-102735</td>
<td>331</td>
</tr>
<tr>
<td>8.136</td>
<td>Introduction to Public Finance - T-WIWI-102877</td>
<td>333</td>
</tr>
<tr>
<td>8.137</td>
<td>Introduction to Stochastic Optimization - T-WIWI-106546</td>
<td>335</td>
</tr>
<tr>
<td>8.138</td>
<td>Investments - T-WIWI-102604</td>
<td>336</td>
</tr>
<tr>
<td>8.139</td>
<td>Laboratory Production Metrology - T-MACH-108878</td>
<td>337</td>
</tr>
<tr>
<td>8.140</td>
<td>Large Diesel and Gas Engines for Ship Propulsions - T-MACH-110816</td>
<td>339</td>
</tr>
<tr>
<td>8.141</td>
<td>Learning Factory "Global Production" - T-MACH-105783</td>
<td>340</td>
</tr>
<tr>
<td>8.142</td>
<td>Logistics and Supply Chain Management - T-WIWI-102870</td>
<td>343</td>
</tr>
<tr>
<td>8.143</td>
<td>Logistics and Supply Chain Management - T-MACH-110771</td>
<td>344</td>
</tr>
<tr>
<td>8.144</td>
<td>Machine Tools and High-Precision Manufacturing Systems - T-MACH-110963</td>
<td>345</td>
</tr>
<tr>
<td>8.145</td>
<td>Macroeconomic Theory - T-WIWI-109121</td>
<td>347</td>
</tr>
<tr>
<td>8.146</td>
<td>Macro-Finance - T-WIWI-106194</td>
<td>348</td>
</tr>
<tr>
<td>8.147</td>
<td>Management Accounting 1 - T-WIWI-102800</td>
<td>349</td>
</tr>
<tr>
<td>8.148</td>
<td>Management Accounting 2 - T-WIWI-102801</td>
<td>351</td>
</tr>
<tr>
<td>8.149</td>
<td>Management and Marketing - T-WIWI-111594</td>
<td>353</td>
</tr>
<tr>
<td>8.150</td>
<td>Managing Organizations - T-WIWI-102630</td>
<td>354</td>
</tr>
<tr>
<td>8.151</td>
<td>Managing the Marketing Mix - T-WIWI-102805</td>
<td>356</td>
</tr>
<tr>
<td>8.152</td>
<td>Manufacturing Measurement Technology - T-ETIT-106057</td>
<td>358</td>
</tr>
<tr>
<td>8.153</td>
<td>Manufacturing Technology - T-MACH-102105</td>
<td>359</td>
</tr>
<tr>
<td>8.154</td>
<td>Material Science II for Business Engineers - T-MACH-102079</td>
<td>361</td>
</tr>
<tr>
<td>8.155</td>
<td>Materials Science I - T-MACH-102078</td>
<td>362</td>
</tr>
<tr>
<td>8.156</td>
<td>Mathematics I - Final Exam - T-MATH-111493</td>
<td>363</td>
</tr>
<tr>
<td>8.157</td>
<td>Mathematics I - Midterm Exam - T-MATH-111492</td>
<td>364</td>
</tr>
<tr>
<td>8.158</td>
<td>Mathematics II - Final Exam - T-MATH-111496</td>
<td>365</td>
</tr>
<tr>
<td>8.159</td>
<td>Mathematics II - Midterm Exam - T-MATH-111495</td>
<td>366</td>
</tr>
<tr>
<td>8.160</td>
<td>Mathematics III - Final Exam - T-MATH-111498</td>
<td>367</td>
</tr>
<tr>
<td>8.161</td>
<td>Measurement and Control Technology - T-ETIT-112852</td>
<td>368</td>
</tr>
<tr>
<td>8.162</td>
<td>Mechanical Design A - T-MACH-112984</td>
<td>369</td>
</tr>
<tr>
<td>8.163</td>
<td>Mechanical Design A, Workshop - T-MACH-112981</td>
<td>370</td>
</tr>
<tr>
<td>8.164</td>
<td>Mechatronical Systems and Products (mach/ettit/wiwi) - T-MACH-112647</td>
<td>371</td>
</tr>
<tr>
<td>8.165</td>
<td>Metal Forming - T-MACH-105177</td>
<td>372</td>
</tr>
<tr>
<td>8.166</td>
<td>Microactuators - T-MACH-101910</td>
<td>374</td>
</tr>
<tr>
<td>8.167</td>
<td>Microeconometrics - T-WIWI-112153</td>
<td>375</td>
</tr>
<tr>
<td>8.168</td>
<td>Mobile Machines - T-MACH-105168</td>
<td>376</td>
</tr>
<tr>
<td>8.169</td>
<td>Mobility and Infrastructure - T-BGU-101791</td>
<td>377</td>
</tr>
<tr>
<td>8.170</td>
<td>Modeling and OR-Software: Introduction - T-WIWI-106199</td>
<td>378</td>
</tr>
<tr>
<td>8.171</td>
<td>Nonlinear Optimization I - T-WIWI-102724</td>
<td>379</td>
</tr>
<tr>
<td>8.172</td>
<td>Nonlinear Optimization I and II - T-WIWI-103637</td>
<td>381</td>
</tr>
<tr>
<td>8.173</td>
<td>Nonlinear Optimization II - T-WIWI-102725</td>
<td>383</td>
</tr>
<tr>
<td>8.174</td>
<td>Novel Actuators and Sensors - T-MACH-102152</td>
<td>385</td>
</tr>
<tr>
<td>8.175</td>
<td>Optimization under Uncertainty - T-WIWI-106545</td>
<td>386</td>
</tr>
<tr>
<td>8.176</td>
<td>Optoelectronic Components - T-ETIT-101907</td>
<td>387</td>
</tr>
<tr>
<td>8.177</td>
<td>Personnel Policies and Labor Market Institutions - T-WIWI-102908</td>
<td>388</td>
</tr>
<tr>
<td>8.178</td>
<td>PH APL-ING-TL01 - T-WIWI-106291</td>
<td>390</td>
</tr>
<tr>
<td>8.179</td>
<td>PH APL-ING-TL02 - T-WIWI-106292</td>
<td>391</td>
</tr>
<tr>
<td>8.180</td>
<td>PH APL-ING-TL03 - T-WIWI-106293</td>
<td>392</td>
</tr>
<tr>
<td>8.181</td>
<td>PH APL-ING-TL04 ub - t-WIWI-106294</td>
<td>393</td>
</tr>
<tr>
<td>8.182</td>
<td>PH APL-ING-TL05 ub - T-WIWI-106295</td>
<td>394</td>
</tr>
<tr>
<td>8.183</td>
<td>PH APL-ING-TL06 ub - T-WIWI-106296</td>
<td>395</td>
</tr>
<tr>
<td>8.184</td>
<td>PH APL-ING-TL07 - T-WIWI-108384</td>
<td>396</td>
</tr>
<tr>
<td>8.185</td>
<td>Physical Basics of Laser Technology - T-MACH-102102</td>
<td>397</td>
</tr>
<tr>
<td>8.186</td>
<td>Physics for Engineers - T-MACH-100530</td>
<td>399</td>
</tr>
<tr>
<td>8.187</td>
<td>Platform Economy - T-WIWI-107506</td>
<td>401</td>
</tr>
</tbody>
</table>
Table Of Contents

8.188. PLM-CAD Workshop - T-MACH-102153 ... 402
8.189. Polymer Engineering I - T-MACH-102137 ... 403
8.190. Polymer Engineering II - T-MACH-102138 ... 405
8.191. Power Network - T-ETIT-100830 ... 407
8.192. Practical Seminar: Digital Services - T-WIWI-110888 .. 408
8.193. Practical Seminar: Interactive Systems - T-WIWI-111914 409
8.195. Practical Training in Basics of Microsystem Technology - T-MACH-102164 411
8.196. Problem Solving, Communication and Leadership - T-WIWI-102871 413
8.197. Procedures of Remote Sensing - T-BGU-103542 .. 414
8.198. Procedures of Remote Sensing, Prerequisite - T-BGU-101638 415
8.199. Process Fundamentals by the Example of Food Production - T-CIWVT-106058 416
8.201. Product Lifecycle Management - T-MACH-105147 .. 419
8.203. Production Economics and Sustainability - T-WIWI-102820 422
8.204. Production Technology for E-Mobility - T-MACH-110984 423
8.205. Production, Logistics and Information Systems - T-WIWI-111602 425
8.207. Project Internship Additive Manufacturing: Development and Production of an Additive Component - T-MACH-110960 427
8.208. Project Management - T-BGU-101675 .. 429
8.209. Project Workshop: Automotive Engineering - T-MACH-102156 430
8.211. Public Law I & II - T-INFO-110300 ... 434
8.212. Public Revenues - T-WIWI-102739 ... 435
8.213. Python Algorithm for Vehicle Technology - T-MACH-110796 436
8.214. Quality Management - T-MACH-102107 ... 438
8.215. Rail System Technology - T-MACH-102143 .. 440
8.216. Remote Sensing, Exam - T-BGU-101636 ... 442
8.218. Seminar Application of Artificial Intelligence in Production - T-MACH-112121 445
8.219. Seminar Data-Mining in Production - T-MACH-108737 447
8.220. Seminar in Business Administration (Bachelor) - T-WIWI-103486 450
8.221. Seminar in Economics (Bachelor) - T-WIWI-103487 ... 462
8.222. Seminar in Engineering Science Master (approval) - T-WIWI-108763 466
8.223. Seminar in Informatics (Bachelor) - T-WIWI-103485 ... 467
8.224. Seminar in Mathematics (Bachelor) - T-MATH-102265 472
8.225. Seminar in Operations Research (Bachelor) - T-WIWI-103488 473
8.226. Seminar in Statistics (Bachelor) - T-WIWI-103489 ... 476
8.227. Seminar Production Technology - T-MACH-109062 ... 478
8.228. Seminar: Legal Studies I - T-INFO-101997 ... 480
8.229. Signals and Systems - T-ETIT-112860 ... 482
8.230. Signals and Systems - Workshop - T-ETIT-112861 .. 483
8.231. Simulation of Coupled Systems - T-MACH-105172 ... 484
8.232. Simulation of Coupled Systems - Advance - T-MACH-108888 486
8.233. Social Science A (Wiwi) - T-GEISTSOZ-109048 .. 487
8.234. Social Science B (Wiwi) - T-GEISTSOZ-109049 .. 489
8.235. Special Topics in Information Systems - T-WIWI-109940 490
8.236. Statistical Modeling of Generalized Regression Models - T-WIWI-103065 491
8.238. Statistics II - T-WIWI-102738 .. 494
8.239. Strategic Decision-Making in Global Production Network Design: A Seminar on Optimization and Simulation - T-MACH-113372 496
8.240. Strategic Management - T-WIWI-113090 .. 498
8.241. Structural and Phase Analysis - T-MACH-102170 .. 500
8.243. Sustainable Vehicle Drivetrains - T-MACH-111578 ... 502
8.244. System Dynamics and Control Engineering - T-ETIT-101921 503
8.245. Systematic Materials Selection - T-MACH-100531 .. 504
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.246</td>
<td>Systems of Remote Sensing, Prerequisite - T-BGU-101637</td>
</tr>
<tr>
<td>8.247</td>
<td>Tactical and Operational Supply Chain Management - T-WIWI-102714</td>
</tr>
<tr>
<td>8.248</td>
<td>Team Project Management and Technology - T-WIWI-110968</td>
</tr>
<tr>
<td>8.249</td>
<td>Team Project Management and Technology (BUS/ENG) - T-WIWI-110977</td>
</tr>
<tr>
<td>8.250</td>
<td>Tires and Wheel Development for Passenger Cars - T-MACH-102207</td>
</tr>
<tr>
<td>8.251</td>
<td>Topics in Human Resource Management - T-WIWI-111858</td>
</tr>
<tr>
<td>8.252</td>
<td>Vehicle Comfort and Acoustics I - T-MACH-105154</td>
</tr>
<tr>
<td>8.253</td>
<td>Vehicle Comfort and Acoustics II - T-MACH-105155</td>
</tr>
<tr>
<td>8.254</td>
<td>Virtual Reality Practical Course - T-MACH-102149</td>
</tr>
<tr>
<td>8.255</td>
<td>Welfare Economics - T-WIWI-102610</td>
</tr>
<tr>
<td>8.256</td>
<td>Workshop Mechatronical Systems and Products (mach/etit/wiwi) - T-MACH-112648</td>
</tr>
</tbody>
</table>
1 General information

Welcome to the new module handbook of your study program! We are delighted that you have decided to study at the KIT Department of Economics and Management and wish you a good start into the new semester! In the following we would like to give you a short introduction to the most important terms and rules that are important in connection with the choice of modules, courses and examinations.

1.1 Structural elements

The program exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.2 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.3 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student’s "binding declaration" on the choice of the module in the sense of §5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive at http://www.wiwi.kit.edu/Archiv_MHB.php.

1.4 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu/:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, see https://campus.studium.kit.edu/faq.php.
1.5 Types of examinations
Examinations are split into written examinations, oral examinations and alternative exam assessments ("Prüfungsleistungen anderer Art"). Examinations are always graded. Non exam assessments ("Studienleistungen") can be repeated several times and are not graded.

1.6 Repeating examinations
Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim. For further information see http://www.wiwi.kit.edu/hinweiseZweitwdh.php.

1.7 Examiners
The examination committee has appointed the KIT examiners and lecturers listed in the module handbook for the modules and their courses as examiners for the courses they offer.

1.8 Additional accomplishments
Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Additional accomplishments with at most 30 CP may appear additionally in the certificate.

1.9 Further information
For current information about studying at the KIT Department of Economics and Management, please visit our website www.wiwi.kit.edu as well as Instagram, LinkedIn, and YouTube. Please also see current notices and announcements for students at: https://www.wiwi.kit.edu/studium.php.
Information around the legal and official framework of the study program can be found in the respective study and examination regulations of your study program. These are available under the Official Announcements of KIT (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).
More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

1.10 Contact
If you have any questions about modules or exams, please contact the examination office of the KIT Department of Economics and Management:

- Ralf Hilser
- Anabela Relvas
- Telefon +49 721 608-43768
- E-Mail: pruefungssekretariat@wiwi.kit.edu

Editorial responsibility:

- Dr. André Wiesner
- Telefon: +49 721 608-44061
- Email: modul@wiwi.kit.edu
2 Study plan

The Bachelor's degree program in Industrial Engineering and Management entails a six-semester standard study period. The basic program in the first three semesters is systematically structured. In the fourth to fifth semesters, a more advanced, specialization program that can be structured depending on one's personal interests and goals is offered.

Figure 2 shows the course and module structure with the respective credit points as well as an example of a possible distribution of modules and courses in the basic program over the semesters, which has proven to be useful.

![Figure 2: Structure of the Bachelor's degree program in Industrial Engineering and Management SPO 2015 as of winter semester 2021/2022 (recommended)](image)

In the **basic program** (blue), the business administration, economics, informatics, operations research, engineering sciences, statistics and mathematics modules are compulsory. In the 3rd semester, one can choose between Material Transformation and Balances, Engineering Mechanics and Material Science in the engineering basic module.

In the **specialization program** (green), a module must be selected from each of the following areas: business administration, economics, informatics, operations research and engineering. As part of the mandatory courses, one seminar module (independent of the course) and two modules must be completed. One module can be selected from business administration or engineering subjects and the other from business administration, economics, informatics, operations research, engineering, statistics, law or sociology.

The **internship** can be completed before or during the Bachelor's program. The performance record of the completed internship is required for registration for the final module examination in the course.

One is free to structure his/her individual course plan as he/she wishes (taking into account the respective provisions of the study and examination regulations as well as applicable module regulations) and choose the semester he/she wishes to start and/or complete the selected modules. It is however strongly recommended to adhere to the proposal for the first three semesters. The content of the courses is interdisciplinary and coordinated accordingly; the intersection freedom of lectures and examination dates is guaranteed for the recommended study semester.

All modules of the basic and advanced program, including the various alternatives within the module, can be found in this module handbook. Seminars that can be taken up as part of the seminar module are published at the WiWi portal at https://portal.wiwi.kit.edu/Seminare.
3 New study plan as of winter semester 2021/2022

For the winter semester 2021/2022, the basic program in the subjects business administration and mathematics has been changed. In the subject business administration, three modules, each worth 5 credit points, must be completed. In mathematics, the distribution of credit points for the three compulsory modules will change.
4 Qualification objectives of the Bachelor's degree in Industrial Engineering and Management

Graduates of the Bachelor's degree in Industrial Engineering and Management are equipped with strategically oriented knowledge in economics, engineering sciences, mathematics and information technology acquired during the three-semester core program.

The economics section includes business-related topics from the financial industry, company management, information industry, production management, marketing and accounting as well as economic correlations of microeconomics and macroeconomics.

The math section is divided into mathematics, statistics and operations research. It includes analysis and linear algebra, descriptive and inductive statistics, elementary probability theory and optimization methods.

In the engineering field, the focus is on material and energy balances, material characterization and development, engineering mechanics and electrical engineering.

The technological area is covered by the Applied and Theoretical Computer Science. Through the comprehensive methodological basis, the graduates are in a position to acknowledge and apply specialized basic concepts, methods, models and approaches. They are also able to analyze and review economic and technological structures and processes.

Graduates can independently solve basic engineering calculations and are able to apply important mathematical concepts and methods to solve concrete tasks.

The graduates have deeper knowledge in business administration, economics, computer science, operations research and engineering. Specialization is either done in the field of business administration or engineering depending on one's wishes. Additional knowledge in statistics, law or sociology is also offered depending on one's interests. They are able to react based on this knowledge from the different subjects and disciplines. They thereby largely operate independently in economic, technical and technological topics and survey, analyze, interpret and evaluate the situations systematically.

They are able to classify specialized problems as well as model and choose appropriate methods and procedures for solving the given tasks as well as derive improvement potentials. They know how to validate, illustrate and interpret the achieved results.

This practical use of their know-how also takes into account the social, scientific and ethical aspects.

Graduates of the Bachelor's degree in Industrial Engineering and Management master the basics of project management and are able to assume responsibility in interdisciplinary teams. They are in a position to argue and defend their position both before expert representatives and laypersons.

They have the ability to apply the acquired information on career-related activities in the industry, service sector or in the public management as well as take up a Master's degree program in Industrial Engineering and Management or any other related course.
5 Key Skills

The Bachelor’s degree course in Industrial Engineering and Management at the Department of Economics and Management distinguishes itself by an exceptionally high level of interdisciplinarity. With the combination of business science, economics, informatics, operations research, mathematics as well as engineering and natural science, the integration of knowledge of different disciplines is an inherent element of the programme. As a result, interdisciplinary and connected thinking is encouraged in a natural way. The integrative taught key skills, which are acquired throughout the entire programme, can be classified into the following fields:

Soft skills
- Team work, social communication and creativity techniques
- Presentations and presentation techniques
- Logical and systematical arguing and writing
- Structured problem solving and communication

Enabling skills
- Decision making in business context
- Project management competences
- Fundamentals of business science
- English as a foreign language

Orientational knowledge
- Acquisition of interdisciplinary knowledge
- Institutional knowledge about economic and legal systems
- Knowledge about international organisations
- Media, technology and innovation

The integrative acquisition of key skills especially takes place in several compulsory courses during the bachelor programme, namely:

- Basic programme in economics and business science
- Seminar module
- Mentoring of the bachelor thesis
- Internship
- Business science, economics and informatics modules
6 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Exam</td>
<td>This field will not influence the calculated grade of its parent.</td>
</tr>
<tr>
<td>Bachelor's Thesis</td>
<td>12 CR</td>
</tr>
<tr>
<td>Internship</td>
<td>10 CR</td>
</tr>
<tr>
<td>Business Administration</td>
<td>24 CR</td>
</tr>
<tr>
<td>Economics</td>
<td>19 CR</td>
</tr>
<tr>
<td>Informatics</td>
<td>24 CR</td>
</tr>
<tr>
<td>Operations Research</td>
<td>18 CR</td>
</tr>
<tr>
<td>Engineering Sciences</td>
<td>21 CR</td>
</tr>
<tr>
<td>Mathematics</td>
<td>21 CR</td>
</tr>
<tr>
<td>Statistics</td>
<td>10 CR</td>
</tr>
<tr>
<td>Compulsory Elective Modules</td>
<td>21 CR</td>
</tr>
</tbody>
</table>

6.1 Preliminary Exam

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-100950 Preliminary Exam</td>
<td>0 CR</td>
</tr>
</tbody>
</table>

6.2 Bachelor's Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101601 Module Bachelor's Thesis</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

6.3 Internship

<table>
<thead>
<tr>
<th>Credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101419 Internship</td>
<td>10 CR</td>
</tr>
</tbody>
</table>
6.4 Business Administration

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-105768 Management and Marketing</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-WIWI-105769 Financing and Accounting</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-WIWI-105770 Production, Logistics and Information Systems</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Specialisation Program Business Administration (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101498 Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101434 eBusiness and Service Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101402 eFinance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101464 Energy Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101435 Essentials of Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103120 Financial Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102752 Fundamentals of Digital Service Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101424 Foundations of Marketing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105928 HR Management & Digital Workplace</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101437 Industrial Production I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105981 Information Systems & Digital Business</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101513 Human Resources and Organizations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101425 Strategy and Organization</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101465 Topics in Finance I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101423 Topics in Finance II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105482 Machine Learning and Data Science</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

6.5 Economics

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101398 Introduction to Economics</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Specialisation Program Economics (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-106472 Advanced Macroeconomics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101499 Applied Microeconomics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101403 Public Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101599 Statistics and Econometrics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105414 Statistics and Econometrics II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101668 Economic Policy I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101501 Economic Theory</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

6.6 Informatics

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101417 Foundations of Informatics</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-WIWI-101581 Introduction to Programming</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Specialisation Program Informatics (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-105112 Applied Informatics</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
6.7 Operations Research

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101418 Introduction to Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>Specialisation Program Operations Research (Election: 1 item)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101413 Applications of Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101414 Methodical Foundations of OR</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103278 Optimization under Uncertainty</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

6.8 Engineering Sciences

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-101155 Electrical Engineering</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-MACH-101259 Engineering Mechanics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-101839 Additional Fundamentals of Engineering</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-MACH-101260 Materials Science</td>
<td>3 CR</td>
</tr>
<tr>
<td>Specialisation Program Engineering Sciences (Election: at least 9 credits)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101404 Extracurricular Module in Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101274 Rail System Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104838 Introduction to Natural Hazards and Risk Analysis</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-102379 Power Network</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101264 Handling Characteristics of Motor Vehicles</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101265 Vehicle Development</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101266 Automotive Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101276 Manufacturing Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101004 Fundamentals of Construction</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101272 Integrated Production Planning</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-105298 Logistics and Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-106527 Mechanical Design A</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-106236 Mechatronic Product Design</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-106581 Measurement, Control, and Manufacturing Measurement Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101287 Microsystem Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101267 Mobile Machines</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101067 Mobility and Infrastructure</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101270 Product Lifecycle Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-106590 Production Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-101156 Control Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-106372 Signals and Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101279 Technical Logistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101275 Combustion Engines I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101303 Combustion Engines II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101261 Emphasis in Fundamentals of Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101262 Emphasis Materials Science</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101286 Machine Tools and Industrial Handling</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
6.9 Mathematics

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-105754</td>
<td>Mathematics 1</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-MATH-105756</td>
<td>Mathematics 2</td>
<td>7 CR</td>
</tr>
<tr>
<td>M-MATH-105757</td>
<td>Mathematics 3</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

6.10 Statistics

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101432</td>
<td>Introduction to Statistics</td>
<td>10 CR</td>
</tr>
</tbody>
</table>
6.11 Compulsory Elective Modules

Election notes
Within the scope of the elective compulsory area, the seminar module (independent of subject) and two modules are to be taken. One module must be chosen from the subjects Business Administration or Engineering Sciences, the other from the subjects Business Administration, Economics, Informatics, Operations Research, Engineering Sciences, Statistics, Law or Sociology.
<table>
<thead>
<tr>
<th>Mandatory</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101816 Seminar Module</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Administration oder Engineering Sciences (Election: 9 credits)</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101404 Extracurricular Module in Engineering</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101274 Rail System Technology</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101498 Management Accounting</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101434 eBusiness and Service Management</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101402 eFinance</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-104838 Introduction to Natural Hazards and Risk Analysis</td>
<td>9</td>
</tr>
<tr>
<td>M-ETIT-102379 Power Network</td>
<td>9</td>
</tr>
<tr>
<td>First usage possible until 9/30/2024.</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101464 Energy Economics</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101435 Essentials of Finance</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101264 Handling Characteristics of Motor Vehicles</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101265 Vehicle Development</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101266 Automotive Engineering</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101276 Manufacturing Technology</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-103120 Financial Economics</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-102752 Fundamentals of Digital Service Systems</td>
<td>9</td>
</tr>
<tr>
<td>M-BGU-101004 Fundamentals of Construction</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101424 Foundations of Marketing</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-105928 HR Management & Digital Workplace</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101437 Industrial Production I</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-105981 Information Systems & Digital Business</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101272 Integrated Production Planning</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-105298 Logistics and Supply Chain Management</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-105482 Machine Learning and Data Science</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-106527 Mechanical Design A</td>
<td>9</td>
</tr>
<tr>
<td>M-ETIT-106581 Measurement, Control, and Manufacturing Measurement Technology</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101287 Microsystem Technology</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101267 Mobile Machines</td>
<td>9</td>
</tr>
<tr>
<td>M-BGU-101067 Mobility and Infrastructure</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101513 Human Resources and Organizations</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101270 Product Lifecycle Management</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-106590 Production Engineering</td>
<td>9</td>
</tr>
<tr>
<td>M-ETIT-101156 Control Engineering</td>
<td>9</td>
</tr>
<tr>
<td>First usage possible until 9/30/2024.</td>
<td></td>
</tr>
<tr>
<td>M-ETIT-106372 Signals and Systems</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101425 Strategy and Organization</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101421 Supply Chain Management</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-105447 Team Project Management and Technology (BUS/ENG)</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101279 Technical Logistics</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101465 Topics in Finance I</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101423 Topics in Finance II</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101261 Emphasis in Fundamentals of Engineering</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101275 Combustion Engines I</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101303 Combustion Engines II</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101262 Emphasis Materials Science</td>
<td>9</td>
</tr>
<tr>
<td>M-MACH-101286 Machine Tools and Industrial Handling</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Administration (Election: at most 9 credits)</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101498 Management Accounting</td>
<td>9</td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Title</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>M-WIWI-101434</td>
<td>eBusiness and Service Management</td>
</tr>
<tr>
<td>M-WIWI-101402</td>
<td>eFinance</td>
</tr>
<tr>
<td>M-WIWI-101464</td>
<td>Energy Economics</td>
</tr>
<tr>
<td>M-WIWI-101435</td>
<td>Essentials of Finance</td>
</tr>
<tr>
<td>M-WIWI-103120</td>
<td>Financial Economics</td>
</tr>
<tr>
<td>M-WIWI-102752</td>
<td>Fundamentals of Digital Service Systems</td>
</tr>
<tr>
<td>M-WIWI-101424</td>
<td>Foundations of Marketing</td>
</tr>
<tr>
<td>M-WIWI-105928</td>
<td>HR Management & Digital Workplace</td>
</tr>
<tr>
<td>M-WIWI-101437</td>
<td>Industrial Production I</td>
</tr>
<tr>
<td>M-WIWI-105981</td>
<td>Information Systems & Digital Business</td>
</tr>
<tr>
<td>M-WIWI-101513</td>
<td>Human Resources and Organizations</td>
</tr>
<tr>
<td>M-WIWI-101425</td>
<td>Strategy and Organization</td>
</tr>
<tr>
<td>M-WIWI-101421</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>M-WIWI-101465</td>
<td>Topics in Finance I</td>
</tr>
<tr>
<td>M-WIWI-101423</td>
<td>Topics in Finance II</td>
</tr>
<tr>
<td>M-WIWI-105482</td>
<td>Machine Learning and Data Science</td>
</tr>
<tr>
<td>M-WIWI-105414</td>
<td>Advanced Macroeconomics</td>
</tr>
<tr>
<td>M-WIWI-101499</td>
<td>Applied Microeconomics</td>
</tr>
<tr>
<td>M-WIWI-101403</td>
<td>Public Finance</td>
</tr>
<tr>
<td>M-WIWI-101599</td>
<td>Statistics and Econometrics</td>
</tr>
<tr>
<td>M-WIWI-105414</td>
<td>Statistics and Econometrics II</td>
</tr>
<tr>
<td>M-WIWI-101668</td>
<td>Economic Policy I</td>
</tr>
<tr>
<td>M-WIWI-101501</td>
<td>Economic Theory</td>
</tr>
<tr>
<td>M-WIWI-101426</td>
<td>Electives in Informatics</td>
</tr>
<tr>
<td>M-WIWI-101441</td>
<td>Methodical Foundations of OR</td>
</tr>
<tr>
<td>M-WIWI-103278</td>
<td>Optimization under Uncertainty</td>
</tr>
<tr>
<td>M-WIWI-10404</td>
<td>Extracurricular Module in Engineering</td>
</tr>
<tr>
<td>M-MACH-101274</td>
<td>Rail System Technology</td>
</tr>
<tr>
<td>M-WIWI-104838</td>
<td>Introduction to Natural Hazards and Risk Analysis</td>
</tr>
<tr>
<td>M-ETIT-102379</td>
<td>Power Network</td>
</tr>
<tr>
<td>M-MACH-101264</td>
<td>Handling Characteristics of Motor Vehicles</td>
</tr>
<tr>
<td>M-MACH-101265</td>
<td>Vehicle Development</td>
</tr>
<tr>
<td>M-MACH-101266</td>
<td>Automotive Engineering</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Manufacturing Technology</td>
</tr>
<tr>
<td>M-BGU-101004</td>
<td>Fundamentals of Construction</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrated Production Planning</td>
</tr>
<tr>
<td>M-MACH-105298</td>
<td>Logistics and Supply Chain Management</td>
</tr>
<tr>
<td>M-MACH-106527</td>
<td>Mechanical Design A</td>
</tr>
<tr>
<td>M-ETIT-106581</td>
<td>Measurement, Control, and Manufacturing Measurement Technology</td>
</tr>
<tr>
<td>M-MACH-101287</td>
<td>Microsystem Technology</td>
</tr>
<tr>
<td>M-MACH-101267</td>
<td>Mobile Machines</td>
</tr>
<tr>
<td>M-BGU-101067</td>
<td>Mobility and Infrastructure</td>
</tr>
<tr>
<td>M-MACH-101270</td>
<td>Product Lifecycle Management</td>
</tr>
<tr>
<td>M-MACH-106590</td>
<td>Production Engineering</td>
</tr>
</tbody>
</table>
Control Engineering
First usage possible until 9/30/2024.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-101156</td>
<td>Control Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-106372</td>
<td>Signals and Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101279</td>
<td>Technical Logistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Combustion Engines I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Combustion Engines II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101261</td>
<td>Emphasis in Fundamentals of Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101262</td>
<td>Emphasis Materials Science</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Machine Tools and Industrial Handling</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-106236</td>
<td>Mechatronic Product Design</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Statistics (Election: at most 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101599</td>
<td>Statistics and Econometrics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105414</td>
<td>Statistics and Econometrics II</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Law or Sociology (Election: at most 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-105084</td>
<td>Public and Civil Law</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-GEISTSOZ-101167</td>
<td>Sociology/Empirical Social Research</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Team Project (Election: at most 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-105440</td>
<td>Team Project Management and Technology</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
7 Modules

7.1 Module: Additional Fundamentals of Engineering [M-WIWI-101839]

Responsible:
- Prof. Dr.-Ing. Alexander Fidlin
- PD Dr. Volker Gaukel
- Prof. Dr. Michael Hoffmann

Organisation:
KIT Department of Economics and Management

Part of:
Engineering Sciences (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: between 3 and 5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102079</td>
<td>Material Science II for Business Engineers</td>
<td>5 CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-MACH-102210</td>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>5 CR</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-CIWVT-106058</td>
<td>Process Fundamentals by the Example of Food Production</td>
<td>3 CR</td>
<td>Gaukel</td>
</tr>
<tr>
<td>T-ETIT-100534</td>
<td>Electrical Engineering for Business Engineers, Part II</td>
<td>5 CR</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

Competence Certificate
See course description.

Prerequisites
None

Competence Goal
See German version.

Content
The module focuses on basic engineering topics related to materials science, engineering mechanics and food processing.

Annotation
The course T-ETIT-100534 “Electrical Engineering for Business Engineers, Part II” is only offered temporarily in the module. It should be pointed out that “Material Science II for Business Engineers” and “Electrical Engineering for Business Engineers, Part II” are not offered in winter term, but only in summer term.

Workload
The total workload for this module is approximately 90 hours.
Module: Advanced Macroeconomics [M-WIWI-106472]

Responsible: Prof. Dr. Johannes Brumm
Organisation: KIT Department of Economics and Management
Part of: Economics (Specialisation Program Economics)
Compulsory Elective Modules (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112723</td>
<td>Computational Macroeconomics</td>
<td>4,5</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4,5</td>
<td>Brumm</td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination is carried out in the form of partial examinations of the courses of the module. The assessment procedures of each course of this module is defined for each course separately.

Competence Goal

The student

- acquires knowledge of modern macroeconomic models
- is able to analyze and discuss fiscal and monetary policy issues
- understands algorithms for solving dynamic, stochastic models
- is able to apply learned numerical methods independently

Content

The module focuses on teaching both theoretical foundations and solution procedures for macroeconomic models.

Annotation

The two courses can be taken in any order. They complement each other, but do not build on each other.

Workload

The total workload for this module is approximately 270 hours. The exact distribution is made according to the credit points of the courses of the module.
Module: Applications of Operations Research [M-WWI-101413]

7.3 Module: Applications of Operations Research [M-WWI-101413]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of: Operations Research (Specialisation Program Operations Research)

Compulsory Elective Modules (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Examination: between 1 and 2 Items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Supplementary Courses (Examination: at most 1 Item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I</td>
<td>4.5 CR</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-106199</td>
<td>Modeling and OR-Software: Introduction</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimization under Uncertainty</td>
<td>4.5 CR</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Competition Certificate

The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

At least one of the courses Facility Location and Strategic Supply Chain Management and Tactical and Operational Supply Chain Management has to be taken.

Competition Goal

The student

- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of Supply Chain Management and their respective optimization problems,
- is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content

Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.

Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Annotation

The planned lectures and courses for the next three years are announced online.
Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.

Recommendation
The courses Introduction to Operations Research I and II are helpful.
7.4 Module: Applied Informatics [M-WIWI-105112]

Responsible:
- Dr.-Ing. Michael Färber
- Prof. Dr. Andreas Oberweis
- Prof. Dr. Ali Sunyaev
- Prof. Dr. Melanie Volkamer

Organisation: KIT Department of Economics and Management

Part of: Informatics (Specialisation Program Informatics)

Credits: 9

Grading scale: Grade to a tenth

Recurrence: Each term

Duration: 1 term

Level: 3

Version: 1

Advanced Programming (Election: 1 item)
- T-WIWI-102747 Advanced Programming - Java Network Programming
- T-WIWI-102748 Advanced Programming - Application of Business Software

Compulsory Elective Area (Election: 1 item)
- T-WIWI-110340 Applied Informatics – Applications of Artificial Intelligence
- T-WIWI-110341 Applied Informatics – Database Systems
- T-WIWI-110342 Applied Informatics – Information Security
- T-WIWI-110338 Applied Informatics – Modelling
- T-WIWI-110343 Applied Informatics – Software Engineering

Competence Certificate
The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module. For passing the module exam in every single partial exam the respective minimum requirements has to be achieved.

- Partial exam I: Advanced Programming - Java Network Programming or alternatively Advanced Programming - Application of Business Software
- Partial exam II: all the rest

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- has the capability of dealing with the practical application of the Java programming language (which is the dominating programming language in many application areas) or alternatively the ability to configure, parameterize and deploy enterprise software to enable, support and automate business processes,
- knows in depth methods and systems of a core area or a core application area of Informatics according to the contents dealt with in the lectures,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.

Content
In this module, object-oriented programming skills using the Java programming language are further deepened. Alternatively important fundamentals of business information systems are conveyed that enable, support and accelerate new forms of business processes and organizational forms. Based on a core application area, basic methods and techniques of computer science are presented.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
7.5 Module: Applied Microeconomics [M-WIWI-101499]

Responsible: Prof. Dr. Johannes Philipp Reiß
Organisation: KIT Department of Economics and Management
Part of: Economics (Specialisation Program Economics) Compulsory Elective Modules (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4,5 CR</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-112228</td>
<td>Digital Markets and Market Design</td>
<td>4,5 CR</td>
<td>Hillenbrand</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4,5 CR</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Introduction to Game Theory</td>
<td>4,5 CR</td>
<td>Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102792</td>
<td>Decision Theory</td>
<td>4,5 CR</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrial Organization</td>
<td>4,5 CR</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4,5 CR</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics</td>
<td>5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
<td>4,5 CR</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Competence Goal
Students
- are introduced to the basic theoretical analysis of strategic interaction situations and shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings, (course “Introduction to Game Theory”);
- are exposed to the basic problems of imperfect competition and its implications for policy making; (course “Industrial Organization”);
- are provided with the basic economics of network industries (e.g., telecom, utilities, IT, and transport sectors) and should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion, and state intervention, (course “Competition in Networks”).

Content
The module’s purpose is to extend and foster skills in microeconomic theory by investigating a variety of applications. Students shall be able to analyze real-life problems using microeconomics.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
Completion of the module Economics is strongly recommended.
7.6 Module: Automotive Engineering [M-MACH-101266]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration 1 term</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102203</td>
<td>Automotive Engineering I</td>
<td>6 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-112126</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
<td>4 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-100092</td>
<td>Automotive Engineering I</td>
<td>6 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Automotive Engineering II</td>
<td>3 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>1.5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>1.5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-110796</td>
<td>Python Algorithm for Vehicle Technology</td>
<td>4 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>4.5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-111820</td>
<td>Control of Mobile Machines – Prerequisites</td>
<td>0 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-MACH-111821</td>
<td>Control of Mobile Machines</td>
<td>4 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td></td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams.
The partial exams consists of a written exam (90 to 120 minutes) or an oral exam (duration 30 to 40 minutes).

Prerequisites
None

Competence Goal
The student
- knows the most important components of a vehicle,
- knows and understands the functioning and the interaction of the individual components,
- knows the basics of dimensioning the components.

Content
In the module Automotive Engineering the basics are taught, which are important for the development, the design, the production and the operation of vehicles. Particularly the primary important aggregates like engine, gear, drive train, chasis and auxiliary equipment are explained, but also all technical equipment, which make the operation safer and easier. Additionally the interior equipment is examined, which shall provide a preferably comfortable, optimum ambience to the user.

In the module Automotive Engineering the focus is on passenger cars and commercial vehicles, which are designed for road applications.

Workload
The total work load for this module is about 270 Hours (9 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 6 credit points is about 180 hours, for courses with 4.5 credit points about 135 hours, for courses with 3 credit points about 90 hours, and for courses with 1.5 credit points about 45 hours. The total number of hours per course results from the time of visiting the lectures and exercises, as well as from the exam duration and the time that is required to achieve the objectives of the module as an average student with an average performance.

Recommendation
Knowledge of the content of the courses *Engineering Mechanics I* [2161238] and *Engineering Mechanics II* [1262276] is helpful.
Learning type
The teaching and learning procedures (lecture, lab course, workshop) are described for each course of the module separately.
7 Module: Combustion Engines I [M-MACH-101275]

Responsible: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of:
Engineering Sciences (Specialisation Program Engineering Sciences)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflicht (Election: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-111550</td>
<td>CO2-Neutral Combustion Engines and their Fuels I</td>
<td>5 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-111585</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td>4 CR</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination contains two oral examinations. The module score results from the two scores weighted according to the ECTS.

Prerequisites
None

Competence Goal
The student can name and explain the working principle of combustion engines. He is able to analyse and evaluate the combustion process. He is able to evaluate influences of gas exchange, mixture formation, fuels and exhaust gas aftertreatment on the combustion performance. He can solve basic research problems in the field of engine development.

The student can name all important influences on the combustion process. He can analyse and evaluate the engine process considering efficiency, emissions and potential.

Content
Working Principle of ICE
Characteristic Parameters
Characteristic parameters
Engine parts
Crank drive
Fuels
Gasoline engine operation modes
Diesel engine operation modes
Emissions
Fundamentals of ICE combustion
Thermodynamics of ICE
Flow field
Wall heat losses
Combustion in Gasoline and Diesel engines
Heat release calculation
Waste heat recovery
CO2-free engine technology

Workload
regular attendance: 62 hours
self-study: 208 hours
7.8 Module: Combustion Engines II [M-MACH-101303]

Responsible: Dr.-Ing. Heiko Kubach
Julia Reichel

Organisation: KIT Department of Mechanical Engineering

Part of:
Engineering Sciences (Specialisation Program Engineering Sciences)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-111560</td>
<td>CO2-Neutral Combustion Engines and their Fuels II</td>
<td>5 CR</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Verbrennungsmotoren II (Election: at least 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>4 CR</td>
<td>Gohl</td>
</tr>
<tr>
<td>T-MACH-105649</td>
<td>Boosting of Combustion Engines</td>
<td>4 CR</td>
<td>Kech, Kubach</td>
</tr>
<tr>
<td>T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>4 CR</td>
<td>Kehrwald, Kubach</td>
</tr>
<tr>
<td>T-MACH-110817</td>
<td>Development of Hybrid Drivetrains</td>
<td>4 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-110816</td>
<td>Large Diesel and Gas Engines for Ship Propulsions</td>
<td>4 CR</td>
<td>Kubach</td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>4 CR</td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-105167</td>
<td>Analysis Tools for Combustion Diagnostics</td>
<td>4 CR</td>
<td>Pfeil</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>4 CR</td>
<td>Bernhardt</td>
</tr>
<tr>
<td>T-MACH-111578</td>
<td>Sustainable Vehicle Drivetrains</td>
<td>4 CR</td>
<td>Koch, Toedter</td>
</tr>
<tr>
<td>T-MACH-105985</td>
<td>Ignition Systems</td>
<td>4 CR</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (60 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Prerequisites

It is only possible to choose this module in combination with the module Combustion Engines I. The module is passed only after the final partial exam of Combustion Engines I is additionally passed.

The course Combustion Engines II [2134131] has to be attended.

Competence Goal

See courses.

Content

Compulsory:
Supercharging and air management
Engine maps
Emissions and Exhaust gas aftertreatment
Transient engine operation
ECU application
Electrification and alternative powertrains

Elective:
Fuels and lubricants for ICE
Fundamentals of catalytic EGA
Analysis tools for combustion diagnostics
Engine measurement techniques
Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines
Workload
regular attendance: 62 h
self-study: 208 h

Learning type
Lecture, Tutorial
7.9 Module: Control Engineering [M-ETIT-101156]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Dr.-Ing. Mathias Kluwe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences) (Usage until 9/30/2024)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences) (Usage until 9/30/2024)
- Compulsory Elective Modules (Engineering Sciences) (Usage until 9/30/2024)

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101921</td>
<td>6 CR</td>
<td>System Dynamics and Control Engineering</td>
<td>2 terms</td>
<td>4</td>
<td>4</td>
<td>Hohmann</td>
</tr>
<tr>
<td>T-ETIT-109285</td>
<td>4 CR</td>
<td>Complex Analysis and Integral Transformations</td>
<td>2 terms</td>
<td>4</td>
<td>4</td>
<td>Kluwe</td>
</tr>
</tbody>
</table>

Prerequisites: none
7.10 Module: eBusiness and Service Management [M-WIWI-101434]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration (Specialisation Program Business Administration)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
<td></td>
<td>4,5 CR</td>
<td>Fegert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td></td>
<td>4,5 CR</td>
<td>Satzger, Vössing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td></td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td></td>
<td>4,5 CR</td>
<td>Mädche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107506</td>
<td>Platform Economy</td>
<td></td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td></td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

Competition Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The students

- understand the strategic and operative design of information and information products,
- analyze the role of information on markets,
- evaluate case studies regarding information products,
- develop solutions in teams.

Content

This module gives an overview of the mutual dependencies of strategic management and information systems. The central role of information is exemplified by the structuring concept of the information life cycle.

The single phases of this life cycle from generation over allocation until dissemination and use of the information are analyzed from a business and microeconomic perspective, applying classical and new theories. The state of the art of economic theory on aspects of the information life cycle are presented. The lecture is complemented by exercise courses. The courses "Platform Economy", "eFinance: Information systems in finance" and "eServices" constitute three different application domains in which the basic principles of the Internet Economy are deepened. In the core lecture "Platform Economy" the focus is set on markets between two parties that act through an intermediary on an Internet platform. Topics discussed are network effects, peer-to-peer markets, blockchains and market design. The course is held in English and teaches parts of the syllabus with the support of a case study in which students analyze a platform.

The course "eFinance: information systems for securities trading" provides theoretically profound and also practical-oriented background about the functioning of international financial markets. The focus is placed on the economic and technical design of markets as information processing systems.

In "eServices" the increasing impact of electronic services compared to the traditional services is outlined. The Information- und Communication Technologies enable the provision of services, which are mainly characterized by interactivity and individuality. This course provides basic knowledge about the development and management of ICT-based services.

The theoretic fundamentals of Information systems can be enriched by a practical experience in Special Topics in Information Engineering and Management. Any practical Seminar at the IM can be chosen for the course Special Topics in Information systems.
Annotation
All practical Seminars offered at the IM can be chosen for Special Topics in Information Systems. Please update yourself on www.iism.kit.edu/im/lehre

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
7.11 Module: Economic Policy I [M-WIWI-101668]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: Economics (Specialisation Program Economics)
Compulsory Elective Modules (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103213</td>
<td>Basic Principles of Economic Policy</td>
<td>4.5 CR</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4.5 CR</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4.5 CR</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td>4.5 CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
<td>4.5 CR</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination takes place in the form of examinations (§4(2),1 SPO) of the selected partial module performance. The examination is carried out separately for each partial module and is described there. It is possible to repeat examinations at any regular examination date.

The grades of the partial module correspond to the grades of the passed examinations. The overall grade of the module is formed from the grades of the partial performances weighted with LP.

Prerequisites

The course "Introduction to Economic Policy" is mandatory in the module.

Competence Goal

Students shall be given the ability to

- understand and deepen basic concepts of micro- and macroeconomic theories
- apply those theories to economic policy issues
- understand government interventions in the market and their legitimation from the perspective of economic welfare
- learn how theory-based policy recommendations are derived

Content

- Intervention in the market: micro-economic perspective
- Intervention in the market: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Carriers of economic policy: political-economic aspects

Workload

Total effort for 9 credit points: approx. 270 hours. The distribution is made according to the credit points of the courses of the module.

Recommendation

Basic knowledge of micro- and macroeconomics is strongly recommended, as taught in the courses Economics I [2610012], and Economics II [2600014].
7.12 Module: Economic Theory [M-WIWI-101501]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: Economics (Specialisation Program Economics)
Compulsory Elective Modules (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Elective: 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4.5</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4.5</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4.5</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Introduction to Game Theory</td>
<td>4.5</td>
<td>Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrial Organization</td>
<td>4.5</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4.5</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-102610</td>
<td>Welfare Economics</td>
<td>4.5</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students

- master concepts that are central to (micro-)economic theory and are familiar with their real-world applications,
- will be able to interpret and critically assess microeconomic models,
- attain in-depth knowledge of the theory of strategic decision making and of general equilibrium models,
- can apply methods from welfare economics to analyze issues like distributional fairness and equality of opportunity.

Content

The module covers central concepts in microeconomic theory as well as their applications. This includes an in-depth introduction to the modelling language and the equilibrium concepts (Nash equilibrium, sub-game-perfect Nash equilibrium, etc.) of non-cooperative game theory ("Introduction to Game Theory") as well as its applications to problems of imperfect competition and industrial organization ("Industriöökonomie") and the design of auctions and (incentive-)mechanisms ("Auction & Mechanism Design").

A further focus of the module is on the development of a micro-founded general equilibrium model in order to examine key macroeconomic issues such as public debt and labor market as well as monetary policies ("Macroeconomic Theory"). Students may also delve deeper into the basics of behavioral economics and experimental design ("Economics & Behavior") as well as into questions of equality of opportunity and the fairness and efficiency of economic allocations ("Wohlfahrtsheorie").

Annotation

Please note that the course T-WIWI-102609 "Advanced Topics in Economic Theory" is currently not available.

Workload

The total workload for this module is approximately 270 hours (9 credit points). The distribution is done according to the credit points of the courses of the module. The workload for courses with 4.5 credit points is approx. 135 hours. The total number of hours per course is calculated from the time required for attending lectures and exercises, as well as examination times and the time required for an average student to achieve the learning objectives of the module.

Recommendation

None
Module: eFinance [M-WIWI-101402]

7.13 Module: eFinance [M-WIWI-101402]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: Business Administration (Specialisation Program Business Administration)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Elect: at least 4,5 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112694</td>
<td>FinTech</td>
<td>4,5 CR</td>
<td>Thimme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The course eFinance: Information Systems for Securities Trading [2540454] is compulsory and must be examined.

Competence Goal
The students:
- are able to understand and analyse the value creation chain in stock broking,
- are able to adequately identify, design and use methods and systems to solve problems in finance,
- are able to evaluate and criticize investment decisions by traders,
- are able to apply theoretical methods of econometrics,
- learn to elaborate solutions in a team.

Content
The module “eFinance” addresses current problems in the finance sector. It is investigated the role of information and knowledge in the finance sector and how information systems can solve or extenuate them. Speakers from practice will contribute to lectures with their broad knowledge. Core courses of the module deal with the background of banks and insurance companies and the electronic commerce of stocks in global finance markets. In addition the course Derivatives offers an insight into future and forward contracts as well as the assessment of options. Exchanges and International Finance are also alternatives which provide a suplementary understanding for capital markets.

Information management topics are the focus of the lecture “eFinance: Information Systems for Securities Trading”. For the functioning of the international finance markets, it is necessary that there is an efficient information flow. Also, the regulatory frameworks play an important role. In this context, the role and the functioning of (electronic) stock markets, online brokers and other finance intermediaries and their platforms are presented. Not only IT concepts of German finance intermediaries are presented, but also international system approaches will be compared. The lecture is supplemented by speakers from the practice (and excursions, if possible) coming from the Deutsche Börse and the Stuttgart Stock Exchange.

Annotation
The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.iism.kit.edu/im/lehre

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
7.14 Module: Electives in Informatics [M-WIWI-101426]

Responsible:
Dr.-Ing. Michael Färber
Prof. Dr. Andreas Oberweis
Prof. Dr. Ali Sunyaev
Prof. Dr. Melanie Volkamer

Organisation:
KIT Department of Economics and Management

Part of:
Compulsory Elective Modules (Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

Compulsory Elective Area (Elective: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110340</td>
<td>Applied Informatics – Applications of Artificial Intelligence</td>
<td>4.5 CR</td>
<td>Färber</td>
</tr>
<tr>
<td>T-WIWI-110341</td>
<td>Applied Informatics – Database Systems</td>
<td>4.5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110342</td>
<td>Applied Informatics – Information Security</td>
<td>4.5 CR</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-110338</td>
<td>Applied Informatics – Modelling</td>
<td>4.5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110343</td>
<td>Applied Informatics – Software Engineering</td>
<td>4.5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110711</td>
<td>Supplement Applied Informatics</td>
<td>4.5 CR</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
<tr>
<td>T-WIWI-104679</td>
<td>Foundations of Mobile Business</td>
<td>4.5 CR</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Advanced Labs (Elective: at most 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111127</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td>4.5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-111124</td>
<td>Advanced Lab Sociotechnical Information Systems Development (Bachelor)</td>
<td>4.5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110541</td>
<td>Advanced Lab Informatics (Bachelor)</td>
<td>4.5 CR</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
<tr>
<td>T-WIWI-112915</td>
<td>Advanced Lab Realization of Innovative Services (Bachelor)</td>
<td>4.5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-108439</td>
<td>Advanced Lab Security, Usability and Society</td>
<td>4.5 CR</td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every single partial exam the respective minimum requirements has to be achieved.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The student

- knows and has mastered methods and systems for core topics and core application areas of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.

Content
The elective module conveys advanced knowledge in the area of applied computer science. This includes, for example, the efficient design and optimization of technical systems, the design and management of database applications or the systematic development of large software systems. Moreover, modeling of complex systems, the use of computer science methods to support knowledge management, and the design and implementation of service-oriented architectures are discussed in this module.
Workload
The total workload for this module is approximately 270 hours. For further information see German version.
7.15 Module: Electrical Engineering [M-ETIT-101155]

Responsible: Dr. Wolfgang Menesklou
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Engineering Sciences (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-100533 | Electrical Engineering for Business Engineers, Part I | 3 CR | Menesklou |

Competence Certificate
The assessment takes place in the form of a written examination lasting 2 hours.

Competence Goal
The student knows and understands basic terms of electrical engineering and should be able to carry out simple calculations of DC and AC circuits.

Content
Supporting the lecture, assignments to the curriculum are distributed. These are solved into additional (voluntary) tutorials.

Module grade calculation
The module grade is the grade of the written exam.

Workload
See German version.
7 MODULES
Module: Emphasis in Fundamentals of Engineering [M-MACH-101261]

7.16 Module: Emphasis in Fundamentals of Engineering [M-MACH-101261]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Specialization in Fundamentals of Engineering (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100534</td>
<td>Electrical Engineering for Business Engineers, Part II</td>
<td>5 CR</td>
<td>Menesklou</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102079</td>
<td>Material Science II for Business Engineers</td>
<td>5 CR</td>
<td>Wagner</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102210</td>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>5 CR</td>
<td>Fidlin</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is removed from the average of the partial examinations, with at least two partial exams need to be.

Competence Goal
Students acquire and deepen skills in engineering fundamentals and can apply them to technical problems. Specific teaching objectives are agreed with the respective coordinator of the course.

Content
The module content depends on the elected courses.

Annotation
Starting winter term 2016/1017 the course "Introduction to Engineering Mechanics II : Dynamics" [2162276] will be held in winter term.

Workload
See German version.
7.17 Module: Emphasis Materials Science [M-MACH-101262]

Responsible: Dr.-Ing. Wilfried Liebig
Organisation: KIT Department of Mechanical Engineering

Part of:
Engineering Sciences (Specialisation Program Engineering Sciences)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Specialization Materials Science (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102141</td>
<td>Constitution and Properties of Wearresistant Materials</td>
<td>4 CR</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-105179</td>
<td>Functional Ceramics</td>
<td>4 CR</td>
<td>Hinterstein, Rheinheimer</td>
</tr>
<tr>
<td>T-MACH-100287</td>
<td>Introduction to Ceramics</td>
<td>6 CR</td>
<td>Schell</td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physical Basics of Laser Technology</td>
<td>5 CR</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-102137</td>
<td>Polymer Engineering I</td>
<td>4 CR</td>
<td>Liebig</td>
</tr>
<tr>
<td>T-MACH-102138</td>
<td>Polymer Engineering II</td>
<td>4 CR</td>
<td>Liebig</td>
</tr>
<tr>
<td>T-MACH-102157</td>
<td>High Performance Powder Metallurgy Materials</td>
<td>4 CR</td>
<td>Schell</td>
</tr>
<tr>
<td>T-MACH-102170</td>
<td>Structural and Phase Analysis</td>
<td>4 CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection</td>
<td>4 CR</td>
<td>Dietrich, Schulze</td>
</tr>
<tr>
<td>T-MACH-102139</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>4 CR</td>
<td>Gruber, Gumbsch</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>4 CR</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>T-MACH-102079</td>
<td>Material Science II for Business Engineers</td>
<td>5 CR</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

Prerequisites

None

Competence Goal

Students acquire and deepen skills in fundamentals of materials science and engineering and can apply them to technical problems. Specific teaching objectives are agreed with the respective coordinator of the course.

Content

The module content depends on the elected courses.

Module grade calculation

The overall grade of the module is removed from the average of the partial examinations, with at least two partial exams need to be.

Workload

The module requires an average workload of 270 hours.

Learning type

Lecture, Tutorial.
Module: Energy Economics [M-WIWI-101464]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of:
- Business Administration (Specialisation Program Business Administration)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102746</td>
<td>Introduction to Energy Economics</td>
<td>5.5 CR</td>
<td>Fichtner</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: 3.5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102607</td>
<td>Energy Policy</td>
<td>3.5 CR</td>
<td>Wietschel</td>
</tr>
<tr>
<td>T-WIWI-100806</td>
<td>Renewable Energy-Resources, Technologies and Economics</td>
<td>3.5 CR</td>
<td>Jochem</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) about the lecture *Introduction into Energy Economics* [2581010] and one optional lecture of the module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The lecture *Introduction into Energy Economics* [2581010] has to be examined.

Competence Goal
The student

- is able to understand interdependencies in energy economics and to evaluate ecological impacts in energy supply,
- is able to assess the different energy carriers and their characteristics,
- knows the energy political framework conditions,
- gains knowledge about new market-based conditions and the cost and potentials of renewable energies in particular.

Content

- **Introduction to Energy Economics:** Characterisation (reserves, suppliers, cost, technologies) of different energy carriers (coal, gas, oil, electricity, heat etc.)

- **Renewable Energy - Resources, Technology and Economics:** Characterisation of different renewable energy carriers (wind, solar, hydro, geothermal etc.)

- **Energy Policy:** Management of energy flows, energy-political targets and instruments (emission trading etc.)

Annotation
Additional study courses (E.g. from other universities) can be transferred to the grade of the module on special request at the institute.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.

Responsible: Prof. Dr.-Ing. Alexander Fidlin

Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Sciences (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102208 | Introduction to Engineering Mechanics I: Statics and Strength of Materials | 3 CR | Fidlin |

Competence Certificate
The assessment consists of a written examination taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Permitted utilities: non-programmable calculator, literature

Prerequisites

None

Competence Goal

Professional competences:

Students will

- know and understand the basic elements of statics;
- be able to carry out simple static calculations on their own;
- know the basic concepts of strength theory: stress, strain and their relationship within the framework of elementary elasticity theory;
- know the most common strength hypotheses;
- be able to calculate independently rods, shafts and beams;
- know the classical cases of stability loss in compressed beams.

Interdisciplinary competences:

Students are familiar with analytical procedures and problem-oriented thinking. They are aware of the complexity of engineering problems and are able to identify and focus on the key issues within them. Students are able to use their acquired knowledge theoretical analysis of practically relevant engineering problems and to develop approaches to their solution.

Content

Statics: force • moment • general equilibrium conditions • center of gravity • inner forces in structure • plane frameworks • adhesion

Annotation

Starting summer 2016 the course "Introduction to Engineering Mechanics I: Statics and Strength of Materials" [2162238] will be held in summer term.

Workload
The total workload for this module is approximately 90 hours

Learning type

Lecture and exercises
Module: Essentials of Finance [M-WIWI-101435]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Business Administration (Specialisation Program Business Administration)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102605</td>
<td>Financial Management</td>
<td>4.5 CR</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102604</td>
<td>Investments</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The student

- has fundamental skills in modern finance
- has fundamental skills to support investment decisions on stock, bond and derivative markets
- applies concrete models to assess investment decisions on financial markets as well as corporate investment and financing decisions.

Content

The module Essentials of Finance deals with fundamental issues in modern finance. The courses discuss fundamentals of the valuation of stocks. A further focus of this module is on modern portfolio theory and analytical methods of capital budgeting and corporate finance.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
7.21 Module: Extracurricular Module in Engineering [M-WIWI-101404]

Responsible: Prüfungsausschuss der KIT-Fakultät für Wirtschaftswissenschaften
Organisation: KIT Department of Economics and Management
Part of: Engineering Sciences (Specialisation Program Engineering Sciences)
Compulsory Elective Modules (Business Administration or Engineering Sciences)
Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Once</td>
<td>1 term</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: between 9 and 12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106291</td>
<td>PH APL-ING-TL01</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-106292</td>
<td>PH APL-ING-TL02</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-106293</td>
<td>PH APL-ING-TL03</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-106294</td>
<td>PH APL-ING-TL04 ub</td>
<td>0 CR</td>
</tr>
<tr>
<td>T-WIWI-106295</td>
<td>PH APL-ING-TL05 ub</td>
<td>0 CR</td>
</tr>
<tr>
<td>T-WIWI-106296</td>
<td>PH APL-ING-TL06 ub</td>
<td>0 CR</td>
</tr>
<tr>
<td>T-WIWI-108384</td>
<td>PH APL-ING-TL07</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the module is determined by the respective module coordinator. It can either be in the form of a general exam or partial exams, and must contain at least 9 credit points (max. 12 credits) and at least 6 hours per week (max. 8 hours per week). The examination may contain presentations, experiments, laboratories, term papers, etc. At least 50 percent of the module examination has to be in the form of a written or an oral examination (according to Section 4 (2), 1 or 2 of the examination regulation).

The formation of the overall grade of the module will be determined by the respective module coordinator.

Prerequisites
The current regulations and guidance on the procedure for applying for an extracurricular module in engineering are explained in detail at https://www.wiwi.kit.edu/APIng-Modul.php.

Competence Goal
Through the extracurricular engineering module, the student is able to deal with technical topics and issues in depth.

The concrete learning objectives are coordinated with the respective module supervisor of the module.

Workload
The total workload for this module is about 270 hours (9 credits). The distribution is based on the credit points of the courses completed as part of the module.
7.22 Module: Financial Economics [M-WIWI-103120]

Responsible: Prof. Dr. Maxim Ulrich
Organisation: KIT Department of Economics and Management
Part of:
Business Administration (Specialisation Program Business Administration)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102878</td>
<td>Computational Risk and Asset Management</td>
<td>4,5 CR</td>
<td>Ulrich</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106194</td>
<td>Macro-Finance</td>
<td>4,5 CR</td>
<td>Ulrich</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None.

Competence Goal

Students apply statistical methods to estimate expected returns, risk and risk densities of different investment instruments. They will know how to apply maximum likelihood and expectation maximization algorithms to estimate linear and non-linear asset pricing models from the fixed-income, equity or option pricing literature. Besides a conceptual understanding, students will implement the estimation algorithms using modern software and learn about current innovations in the macro-finance literature, aiming to price bonds, equity and option markets with explicitly accounting for fundamental economic and monetary policy related risks under no-arbitrage.

Content

See respective lecture

Annotation

See respective lecture

Workload

The total workload for this module is approximately 270 hours. For further information, see respective lecture.
7.23 Module: Financing and Accounting [M-WIWI-105769]

Responsible:
Prof. Dr. Martin Ruckes
Dr. Jan-Oliver Strych
Prof. Dr. Marcus Wouters

Organisation:
KIT Department of Economics and Management

Part of:
Business Administration (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112820</td>
<td>Introduction to Finance and Accounting</td>
<td>5 CR Luedecke, Ruckes, Strych, Uhrig-Homburg, Wouters</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination is in written form. The examination is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Competence Goal
The student

- has basic knowledge in financial assessment of important business decisions and the functioning of financial markets,
- has an understanding of problems, interrelationships and solutions of internal accounting of companies,
- knows the structures and functions of external accounting,
- has an overview of important components of the annual financial statements of companies and is able to assess them economically.

With the knowledge acquired in the three basic business administration modules, the prerequisites are created in the area of business administration to expand this knowledge in the specialization program.

Content
The fundamentals for the financial analysis of important business decisions are taught. In addition, the fundamentals of internal and external accounting are laid and an introduction is given to accounting and the annual financial statements.

Workload
Total workload required for 5 credit points: approx. 150 hours
Module: Foundations of Informatics [M-WIWI-101417]

Responsible: Dr.-Ing. Michael Färber
Prof. Dr. Sanja Lazarova-Molnar

Organisation: KIT Department of Economics and Management

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102749</td>
<td>Foundations of Informatics I</td>
<td>5 CR</td>
<td>Färber</td>
</tr>
<tr>
<td>T-WIWI-102707</td>
<td>Foundations of Informatics II</td>
<td>5 CR</td>
<td>Lazarova-Molnar</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the individual courses of this module.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. For a successful module assessment both partial exams have to be passed.

- Foundations of Informatics I: Written exam in the first week of the recess period (60 min)
- Foundations of Informatics II: Written exam in the first week of the recess period (90 min). It is possible to gain 0.3-0.4 additional grading points for a passed exam by successful completion of a bonus exam.

When both partial exams are passed, the overall grade of the module is the average of the grades for each course weighted by the credit points and truncated after the first decimal.

Prerequisites

None

Competence Goal

The student

- knows the main principles, methods and systems of computer science,
- can use this knowledge for applications in advanced computer science courses and other areas for situation-adequate problem solving,
- is capable of finding strategic and creative responses in the search for solutions to well defined, concrete, and abstract problems.

The student can deepen the learned concepts, methods, and systems of computer science in advanced computer science lectures.

Content

This module conveys knowledge about modeling, logic, algorithms, sorting and searching algorithms, complexity theory, problem specifications, and data structures. From the field of theoretical computer science, formal models of automata, languages and algorithms are presented and applied to the architecture of computer systems.

Workload

The total workload for this module is approximately 300 hours.

Recommendation

It is strongly recommended to attend the courses of the core program in the following sequence: Introduction to Programming with Java, Foundations of Informatics I, Foundations of Informatics II.
7.25 Module: Foundations of Marketing [M-WIWI-101424]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration (Specialisation Program Business Administration)
- Compulsory Elective Modules (Business Administration or Engineering Sciences)
- Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102805</td>
<td>Managing the Marketing Mix</td>
<td>4,5 CR</td>
<td>Klarmann</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at least 4,5 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111367</td>
<td>B2B Sales Management</td>
<td>4,5 CR</td>
<td>Klarmann</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112156</td>
<td>Brand Management</td>
<td>4,5 CR</td>
<td>Kupfer</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106569</td>
<td>Consumer Behavior</td>
<td>4,5 CR</td>
<td>Scheibehenne</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course Marketing Mix is compulsory and must be examined.

Competence Goal

The aim of this module is to prepare students for a job in marketing or sales. Especially in technically oriented companies, employees who have a certain technical background as industrial engineers or business informatics specialists are often fit for this purpose.

Students

- are familiar with the most important concepts, procedures and theories of the four instruments of the marketing mix (product management, price management, communication management and sales management)
- have the knowledge to make decisions regarding current and future products (product innovations, e.g. by using conjoint analysis)
- know how customers perceive brands and how this perception can be influenced by the company
- understand how customers react to prices (e.g. using price-sales functions)
- can determine prices on the basis of conceptual and quantitative considerations
- know the basics of price differentiation
- are familiar with various communication instruments (e.g. TV advertising) and can design them accurately
- make communication decisions systematically (e.g. by means of media planning)
- can segment the market and position the product
- know how to assess the importance and satisfaction of customers.

Additionally when taking the course "B2B Sales Management":

- can shape the relationship with customers and sales partners and know the basics of sales organization as well as essential sales channel decisions
- know about specifics of marketing in B2B
- are able to identify different B2B business types and their peculiarities in marketing and sales
- are able to prioritize customers and calculate B2B customer lifetime value
- are able to determine value-based prices and prepare and conduct B2B sales presentations.

Additionally when taking the course "Consumer Behavior":

- know about the influences of social factors, neuronal processes and cognitive resources on consumer behavior
- know about the influences of evolutionary factors, emotions, individual differences and motivation on consumer behavior.
Content
The core course of the module is "Marketing Mix". This course is compulsory and must be examined. "Marketing Mix" contains instruments and methods that enable you to goal-oriented decisions in the operative marketing management (product management, pricing, promotion and sales management). In the "B2B Sales Management" course, we impart knowledge about marketing and sales in environments in which companies themselves distribute and market (often technically highly complex) products to other companies ("business-to-business"). In the “Consumer Behavior” course, we provide an understanding of situational, biological, cognitive, and evolutionary factors that influence consumer behavior. This understanding is provided from an interdisciplinary perspective, incorporating relevant theories and empirical research findings from psychology, cognitive science, biology, and economics.

Annotation
The courses "Services Marketing and B2B Marketing" and "International Marketing" were offered for the last time in the winter semester 2020/21 and will be replaced by the course "B2B Sales Management" from the winter semester 2021/22 on. The course "Marketing Mix" will continue to be offered as normal in the summer semester 2021 and will also be retained in the long term. For further information please contact the Marketing & Sales Research Group (marketing.iism.kit.edu).

Workload
Total effort for 9 credit points: approx. 270 hours.
The exact distribution is done according to the credit points of the courses of the module.
Module: Fundamentals of Construction [M-BGU-101004]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Engineering Sciences (Specialisation Program Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101691</td>
<td>Construction Technology</td>
<td>6 CR Haghsheno</td>
</tr>
<tr>
<td>T-BGU-101675</td>
<td>Project Management</td>
<td>3 CR Haghsheno</td>
</tr>
</tbody>
</table>

Prerequisites

None

Competence Goal

The student

- is familiar with all substantial domains of construction
- knows and understands substantial construction methods and construction machines
- masters basic construction calculations
- knows and understands the fundamentals of project management in civil engineering
- can apply his / her knowledge in a goal-oriented manner to accomplish a construction project efficiently

Annotation

We encourage students to deepen their knowledge in construction by building additional customized modules from the courses offered by TMB. Please consult with the tutors of this module. Further information is available at www.tmb.kit.edu.

Recommendation

None

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management
Part of: Business Administration (Specialisation Program Business Administration)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Business Administration)

Credits	**Grading scale**	**Recurrence**	**Duration**	**Language**	**Level**	**Version**
9 | Grade to a tenth | Each term | 2 terms | German | 3 | 7

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 CR</td>
<td></td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4.5 CR</td>
<td></td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
Students
- understand services from different perspectives and the concept of value creation in service networks
- know about the concepts, methods and tools for the design, modelling, development and management of digital services and are able to use them
- understand the basic characteristics and effects of integrated information system as an integral element of digital services
- gain experience in group work as well as in the analysis of case studies and the professional presentation of research results
- practice skills in the English language in preparation of jobs in an international environment

Content
Global economy is increasingly determined by services: in industrialized countries nearly 70% of gross value added is achieved in the tertiary sector. Unfortunately, for the design, development and the management of services traditional concepts focused on goods are often insufficient or inappropriate. Besides, the rapid technical advance in the information and communication technology sector pushes the economic importance of digital services even further thus changing the competition environment. ICT-based interaction and individualization open up completely new dimensions of shared value between clients and providers, dynamic and scalable “service value networks” replace established value chains, digital services are provided globally crossing geographical boundaries. This module establishes a basis for further specialization in service innovation, service economics, service design, service modelling, service analytics as well as the transformation and coordination of service networks.

Annotation
This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None
Module: Handling Characteristics of Motor Vehicles [M-MACH-101264]

Responsible: Prof. Dr. Frank Gauterin

Organisation: KIT Department of Mechanical Engineering

Part of: Engineering Sciences (Specialisation Program Engineering Sciences)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Vehicle Properties (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>3</td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-105153</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>3</td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>3</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>3</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>4.5</td>
<td>Frey, Gauterin, Gießler</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The student

- knows and understands the characteristics of vehicles, owing to the construction and design tokens,
- knows and understands especially the factors being relevant for comfort and acoustics
- is capable of fundamentally evaluating and rating handling characteristics.

Content

See courses.

Workload

The total work load for this module is about 270 Hours (9 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 4.5 credit points is about 135 hours, and for courses with 3 credit points about 90 hours. The total number of hours per course results from the time of visiting the lectures and exercises, as well as from the exam duration and the time that is required to achieve the objectives of the module as an average student with an average performance.

Recommendation

7.29 Module: HR Management & Digital Workplace [M-WIWI-105928]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Petra Nieken

Organisation: KIT Department of Economics and Management

Part of: Business Administration (Specialisation Program Business Administration)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Elective Offer (Election:)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102909</td>
<td>Human Resource Management</td>
<td>4.5 CR</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111858</td>
<td>Topics in Human Resource Management</td>
<td>3 CR</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4.5 CR</td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111914</td>
<td>Practical Seminar: Interactive Systems</td>
<td>4.5 CR</td>
<td>Mädche</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams of the courses in this module. The assessment procedures are described for each course in the module separately.

The overall grade of the module is the average of grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Please refer to the course descriptions for potential restrictions regarding an individual course.

Competence Goal
The student
- understands and analyses challenges and objectives within organizations
- applies economic models and empirical methods to analyze and solve challenges with a focus on the future of work
- understands the impact of digitalization and new information and communication technology on the work life and HR decisions
- knows how to apply scientific research methods and understands the underlying problems

Content
The module „HR Management & Digital Workplace“ offers an interdisciplinary approach and brings together knowledge about Human Resource Management, Leadership and Digitalization. The module specifically focuses on topics related to the future of work in organizations. The topics range from interactive systems at the digital workplace and human-centered design, to recruiting, training and development, as well as (digital) leadership. All courses in the module foster active participation and allow students to learn state-of-the-art concepts and methods and apply them to real-world challenges.

Annotation
Please refer to the course descriptions for potential restrictions regarding an individual course.

Workload
Total workload for 9 credits: approx. 270 hours.
7.30 Module: Human Resources and Organizations [M-WIWI-101513]

Responsible: Prof. Dr. Petra Nieken

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration (Specialisation Program Business Administration)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Elective Offer (Election:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102909</td>
<td>Human Resource Management</td>
<td>4.5 CR</td>
<td>Nieken</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td>4.5 CR</td>
<td>Nieken</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>T-WIWI-111858</td>
<td>Topics in Human Resource Management</td>
<td>3 CR</td>
<td>Nieken</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>T-WIWI-102630</td>
<td>Managing Organizations</td>
<td>3.5 CR</td>
<td>Lindstädt</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>T-WIWI-102871</td>
<td>Problem Solving, Communication and Leadership</td>
<td>2 CR</td>
<td>Lindstädt</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams or alternative exam assessment of the single courses of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The course T-WIWI-111858 Topics in Human Resource Management may not be taken together with the course T-WIWI-102871 Problem Solving, Communication, and Leadership.

Competence Goal
The student
- knows and analyzes basic concepts, instruments, and challenges of present human resource and organizational management.
- uses the techniques he / she has learned to evaluate strategic situations which occur in human resource and organizational management.
- evaluates the strengths and weaknesses of existing structures and rules based on systematic criterions.
- Discusses and evaluates the practical use of models and methods by using case studies.
- has basic knowledge of fit and challenges of different scientific methods in the context of personnel and organizational economics.

Content
Students acquire basic knowledge in the field of human resources, personnel economics and organization economics. Strategic as well as operative aspects of human resource management practices are analyzed and current research results discussed. Students gain knowledge about methods and instruments from the field of human resources and are able to apply those. The module addresses the opportunities and threats of digitalization in the workplace as well as the use of AI in HRM. In addition, questions of optimal organizational design or personnel politics are considered. The focus lies on the strategic analysis of decisions and the use of microeconomic or behavioral approaches. Empirical results of field or lab studies are discussed critically.

Workload
Total workload for 9 credits: approx. 270 hours.

Recommendation
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory and statistics is recommended.
7.31 Module: Industrial Production I [M-WIWI-101437]

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102606</td>
<td>Fundamentals of Production Management</td>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-102870</td>
<td>Logistics and Supply Chain Management</td>
<td>3.5</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-102820</td>
<td>Production Economics and Sustainability</td>
<td>3.5</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: 3.5 credits)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102870</td>
<td>Logistics and Supply Chain Management</td>
<td>3.5</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-102820</td>
<td>Production Economics and Sustainability</td>
<td>3.5</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course “Fundamentals of Production Management” [2581950] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The course “Fundamentals of Production Management” [2581950] and one additional activity have to be chosen.

Competence Goal
- Students shall be aware of the important role of industrial production and logistics for production management.
- Students shall use relevant concepts of production management and logistics in an adequate manner.
- Students shall be able to reflect on decision principles in firms and their circumstances in the light of the production management aspects studied.
- Students shall be proficient in describing essential tasks, difficulties and solutions to problems in production management and logistics.
- Students shall be able to describe relevant approaches of modeling production and logistic systems.
- Students shall be aware of the important role of material and energy-flows in production systems.
- Students shall be proficient in using exemplary methods for solving selected problems.

Content
This module is designed to introduce students into the wide area of industrial production and logistics management. It focuses on strategic production management under the aspect of sustainability. The courses use interdisciplinary approaches of systems, also theory to describe the central tasks of industrial production management and logistics. Herein, attention is drawn upon strategic corporate planning, research and development as well as site selection. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Workload
Total effort will account to 270 hours (9 credit points) and can be allocated according to the credit point rating. Therefore, a course with 3.5 credits requires an effort of approximately 105h and a course with 5.5 credits 165h.

The total effort for each course consists of attending lectures and tutorials, examination times and the time an average student needs to prepare himself in order to pass the exam with an average grade.
Module: Information Systems & Digital Business [M-WIWI-105981]

Responsible:
- Prof. Dr. Alexander Mädche
- Prof. Dr. Gerhard Satzger
- Prof. Dr. Christof Weinhardt

Organisation:
- KIT Department of Economics and Management

Part of:
- Business Administration (Specialisation Program Business Administration)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Business Administration)

Credits: 9
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 2 terms
Language: German/English
Level: 3
Version: 2

Compulsory Elective Courses (Election: at least 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106569</td>
<td>Consumer Behavior</td>
<td>4,5 CR</td>
<td></td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td>4,5 CR</td>
<td></td>
<td>Satzger, Vössing</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5 CR</td>
<td></td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4,5 CR</td>
<td></td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-107506</td>
<td>Platform Economy</td>
<td>4,5 CR</td>
<td></td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Complementary Offer (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110888</td>
<td>Practical Seminar: Digital Services</td>
<td>4,5 CR</td>
<td></td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-111914</td>
<td>Practical Seminar: Interactive Systems</td>
<td>4,5 CR</td>
<td></td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-112154</td>
<td>Practical Seminar: Platform Economy</td>
<td>4,5 CR</td>
<td></td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination takes place in the form of partial examinations via courses of the module amounting to a total of at least 9 LP.
The overall score of the module is formed from the credit-weighted scores of the partial examinations and truncated after the first decimal place.

Competence Goal
Students

- understand the basic concepts of interactive systems as well as the economic foundations and key components of platforms
- explore the theoretical grounding of interactive systems leveraging theories from reference disciplines such as psychology
- understand business models, network effects of digital platforms and get to know different market forms and market mechanisms
- gain experience in group work as well as in the analysis of case studies and the professional presentation of research results
Content
The “Information Systems & Digital Business” modules of the research groups of Prof. Dr. Alexander Mädche (Information Systems & Service Design), Prof. Dr. Gerhard Satzger (Digital Service Innovation) and Prof. Dr. Christof Weinhardt (Information & Market Engineering), offer a comprehensive overview on important topics of digitalization – blending aspects of digital interaction, digital services and the platform economy. Courses in this module cover the aspects of interaction between humans and information systems as well as the economic foundations of platform businesses:

Foundations of Interactive Systems:
Advanced information and communication technologies (ICT) make interactive systems ever-present in the users’ private and business life. They are an integral part of E-Commerce portals or social networking sites as well as at the workplace, e.g. in the form of collaboration portals or analytical dashboards. Furthermore, with the ever-increasing capabilities of ICT, the design of human-computer interaction is becoming increasingly important. The aim of this module is to introduce the foundations, related theories, key concepts, and design principles as well as current practice of contemporary interactive systems. The students get the necessary knowledge to guide the successful implementation of interactive systems in business and private life.

Platform Economy:
Apple, Alphabet, Amazon, Microsoft, and Facebook; five of the most valuable companies worldwide create large portions of their profits by employing a digital platform model. This module teaches the key design considerations of digital platforms: their foundations in economic theory, their core components and design aspects, the adequate selection of market mechanisms for achieving certain goals, and the role of user behavior in the context of digital platforms. The theoretic foundations are enriched by discussions of several real-world examples, e.g. from the finance sector. Thus, the students are enabled to a) analyze given platforms and make recommendations for improvements and b) independently design new platforms for given use cases.

Consumer Behavior:
Consumer decisions are ubiquitous in daily life and they can have long-ranging and important consequences for individual (financial) well-being and health but also for societies and the planet as a whole. To help people to make better choices it is important to understand the factors that influence their behavior. Towards this goal, we will explore how consumer behavior is shaped by social influences, situational and cognitive constraints, as well as by emotions, motivations, evolutionary forces, neuronal processes, and individual differences. Across all topics covered in class, we will engage with basic theoretical work as well as with groundbreaking empirical research and current scientific debates. The lecture will be held in English.

Annotation
The module can no longer be taken as of winter semester 2022/2023.

Workload
Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module (120-135h for courses with 4.5 credit points). The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.
7.33 Module: Integrated Production Planning [M-MACH-101272]

Responsible: Prof. Dr.-Ing. Gisela Lanza

Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-109054 | Integrated Production Planning in the Age of Industry 4.0 | 9 CR | Lanza |

Competence Certificate

Written Exam (120 min)

Prerequisites

none

Competence Goal

The students

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Content

Within this engineering sciences-oriented module the students will get to learn principle aspects of organization and planning of production systems.

Workload

regular attendance: 63 hours
self-study: 207 hours

Learning type

Lecture, exercise, excursion
7.34 Module: Internship [M-WIWI-101419]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Studiendekan des KIT-Studienganges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of:</td>
<td>Internship</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>pass/fail</td>
<td>Once</td>
<td>1 term</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-102611 | Internship | 10 CR | Studiendekan des KIT-Studienganges |

Competence Certificate

The assessment is carried out by the evidence of completed full-time internships of at least 12 weeks with at least 20 working hours per week and a presentation of the internship in the form of a written report on the activities. The internship is not graded.

1. Information on evidence of completed full-time internships:

The internship is proofed by the certificate of the intern’s office. The certificate has to be formally correct with official corporate letterhead and handwritten countersigned by a responsible employee of the company.

The certificate must at least contain the following information:

* Company / Location
* Duration: from ... to ...
* Hours of work (weakly)
* Working interruption, indicating the vacation and sick days
* Department
* Headwords to the activities

2. Information on the presentation:

The internship report should be at least one page (typewritten, not handwritten) for each Location. It must be countersigned by a representative of the intern’s office.

Prerequisites

None

Competence Goal

- has general insight into the essential processes in a company,
- is in a position to identify operation correlations and has the knowledge and skills to facilitate a fast understanding of the processes in the company,
- in addition to practical professional experience and competences, also has key competences such as own initiative, ability to work in a team and communication skills as well as ability to integrate into corporate hierarchies and procedures,
- has the experience to accomplish complex IT and business tasks under realistic conditions within the framework of the relevant legal aspects and while applying the total acquired knowledge (interlaced thinking),
- has an idea of the professional development potential in the economy through pursuit of study-related activities,
- knows the technical and professional requirements in the individually targeted future occupation and can take this knowledge into account for the future planning of his/her studies and career,
- can assess and estimate own technical and professional strengths and weaknesses through his/her evaluation of the company.
Content
The internship may be done in economic, business and/or technical companies. At best, it is done on activities which are located at the intersection of the two fields - getting to know the specific requirements of Industrial Engineering and Management.
A commercial internship provides an insight into business or administrative processes of business transactions. Therefor departments such as controlling, organizing, marketing and planning appear particularly suitable.
Work experiences in the departments of engineering, work preparation and provision of material or IT cover more technical aspects of the internship. But work experiences in an engineering firm go with a technical internship.
It remains the companies and interns left, which stations and areas the intern will eventually go through. But the focus should always be in accordance with operational realities of the company.

Annotation
Internships, that were completed even before studying may be recognized, if the criteria for recognition are met. After recognition of the compulsory internship, there can be taken a semester off for a voluntary, student-related internship.
Regarding to the election of the company, in which the internship is completed, there are no specific rules. With a view to the future professional career, it is recommended to absolve the internship in a larger, possibly international company.
Vacation days are not figured into the internship.
Only three sick leave days may incurred at all. Any additional sick days are not figured into the internship.
A relevant vocational education of at least two years is accepted as a performance equivalent to the internship.

Workload
The total workload for this module is approximately 300 hours.
Module: Introduction to Economics [M-WIWI-101398]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: Economics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102708</td>
<td>Economics I: Microeconomics</td>
<td>5 CR Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102709</td>
<td>Economics II: Macroeconomics</td>
<td>5 CR Wigger</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The assessment procedures of each course of this module is defined for each course separately.

Competence Goal
The student

- knows and understands basic economic problems,
- understands economic policy in globalized markets,
- is able to develop elementary solution concepts.

The lectures of this module have different focuses: In Economics I, economic problems are seen as decision problems, Economics II treats the dynamics of economic processes.

Content
The basic concepts, methods and models of micro- and macroeconomics are treated. The course Economics I: Microeconomics [2600012] deals with micro-economic decision theory, questions of market theory and problems of imperfect competition and with basic principles of game theory and welfare economics. Economics II: Macroeconomics [2600014] discusses economic organization models and national accounts as well as the question of international trade and monetary policy. Furthermore, the complex growth, boom and economic speculations are dealt with.

Module grade calculation
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Annotation
Notice: The lecture Economics I: Microeconomics [2600012] is part of the preliminary examination concerning § 8(1) of the examination regulation in the study programs Industrial Engineering and Management B.Sc. and Economics Engineering B.Sc.. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Workload
See German version.

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
7.36 Module: Introduction to Natural Hazards and Risk Analysis [M-WIWI-104838]

Responsible: apl. Prof. Dr. Michael Kunz

Organisation: KIT Department of Economics and Management

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101500</td>
<td>Introduction to Engineering Geology</td>
<td>5 CR</td>
<td>Blum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite</td>
<td>3 CR</td>
<td>Wursthorn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>3 CR</td>
<td>Wursthorn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101637</td>
<td>Systems of Remote Sensing, Prerequisite</td>
<td>1 CR</td>
<td>Cermak, Hinz, Weidner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101638</td>
<td>Procedures of Remote Sensing, Prerequisite</td>
<td>1 CR</td>
<td>Weidner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101636</td>
<td>Remote Sensing, Exam</td>
<td>4 CR</td>
<td>Cermak, Hinz, Weidner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-103542</td>
<td>Procedures of Remote Sensing</td>
<td>3 CR</td>
<td>Weidner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103525</td>
<td>Geological Hazards and Risk</td>
<td>8 CR</td>
<td>Schäfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101693</td>
<td>Hydrology</td>
<td>4 CR</td>
<td>Zehe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101092</td>
<td>Climatology</td>
<td>1 CR</td>
<td>Ginete Werner Pinto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-105594</td>
<td>Exam on Climatology</td>
<td>5 CR</td>
<td>Ginete Werner Pinto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-101667</td>
<td>Hydraulic Engineering and Water Management</td>
<td>4 CR</td>
<td>Rodrigues Pereira da Franca</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Elective: at least 9 credits)

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
There are no singular exams for Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66]. Therefore it not possible to choose Remote Sensing [GEOD-BFB-1] and additionally the courses Remote Sensing Systems, Remote Sensing Methods or the project Angewandte Fernerkundung [20267] (because they are already included). See also “Recommendations”.

Competence Goal
The student possesses

- knowledge of various extreme events (meteorological, hydrological, geophysical) and their characteristics and causes
- an improved understanding of natural disasters, their causes and effects from an interdisciplinary perspective
- knowledge of methods of early warning and/or prediction of extreme natural events, as well as possible prevention and precautionary measures.

Content
The courses in this module primarily deal with scientific and engineering aspects of extreme events and natural disasters. The overarching aim of the module is to gain a better understanding of risk as a complex interaction of different mechanisms and processes. Contributions from meteorology, geophysics and hydrology enable an interdisciplinary understanding of extreme events and disasters. The teaching of methodological knowledge (e.g. meteorological, hydrological or geophysical measurement methods) is of great importance. These also include methods of hazard analysis and forecasting and/or early warning with the aim of significantly reducing the exposure and vulnerability of people, critical infrastructure and technical or biological systems and thus the impact of extreme events.
Annotation
As a precaution, we would like to point out that the lecture belonging to the "Climatology" [T-PHYS-101092] has the number 4051111 and is read by Mr. Pinto. The lecture of the same name by Mr. Hogewind (6111031) does not belong to this course and is not creditable in this module.

Information on the course "Geological Hazards and Risk":
Language: English
Content:
- Earthquake Hazards
 - Short introduction to seismology and seismometry (occurrence of tectonic earthquakes, types of seismic waves, magnitude, intensity, source physics)
 - Induced seismicity
 - Engineering seismology, Recurrence intervals, Gutenberg-Richter, PGA, PGV, spectral acceleration, hazard maps
 - Earthquake statistics
 - Liquefaction
- Tsunami Hazards
- Landslide Hazards
- Hazards from Sinkholes
- Volcanic Hazards
 - Short introduction to physical volcanology
 - Types of volcanic hazards
- The Concept of Risk, Damage and Loss
- Data Analysis and the use of GIS in Risk analysis
- Risk Modelling - Scenario Analysis
- Risk Reduction and Risk Management
- Analysis Feedback and Prospects in the Risk Modelling Industry

Learning outcomes:
The students understand basic concepts of hazard and risk. They can explain in detail different aspects of earthquake hazard, volcanic hazard as well as other geological hazards, can compare and evaluate those hazards. They have fundamental knowledge of risk reduction and risk management. They know methods of risk modelling and are able to apply them.

Examination: Active and regular attendance of lecture and practicals. Project work (graded).

Workload:
60 h: active attendance during lectures and exercises
90 h: review, preparation and weekly assignments
90 h: project work

Workload
The total workload for this module is approximately 270 hours.

Recommendation
The courses Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66] may be chosen as a minimal combination for the exam. However, it is recommended to choose the comprehensive combination Remote Sensing [GEOD-BFB-1], which includes Remote Sensing Systems [20241/42], Remote Sensing Methods [20265/66] and the project Angewandte Fernerkundung [20267].

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: Operations Research (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-102758 | Introduction to Operations Research I and II | 9 CR | Nickel, Rebennack, Stein |

Competence Certificate
The assessment of the module is carried out by a written examination (120 minutes). In each term (usually in March and August), one examination is held for both courses.

Prerequisites
None

Competence Goal
The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content
This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.
This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Module grade calculation
The overall grade of the module is the grade of the written examination.

Workload
The total workload for this module is approx. 270 hours (attendance time: 85 hours, other time for preparation and follow-up as well as exam preparation: 185 hours, 9 credit points). The total number of hours per course results from the time spent attending the lectures and exercises, as well as the examination times and the time required for an average student to achieve the learning objectives of the module.
7.38 Module: Introduction to Programming [M-WIWI-101581]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of: Informatics (mandatory)

Credits 5
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German
Level 3
Version 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102735</td>
<td>Introduction to Programming with Java</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written resp. computer-based exam (60 min) according to Section 4 (2),1 of the examination regulation.

The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written resp. computer-based exam.

The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Competence Goal
see german version

Content
see german version

Workload
The total workload for this course is approximately 150 hours. For further information see German version.
Module: Introduction to Statistics [M-WIWI-101432]

Responsible:
- Prof. Dr. Oliver Grothe
- Prof. Dr. Melanie Schienle

Organisation:
KIT Department of Economics and Management

Part of:
Statistics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102737</td>
<td>Statistics I</td>
<td>5 CR</td>
<td>Grothe, Schienle</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102738</td>
<td>Statistics II</td>
<td>5 CR</td>
<td>Grothe, Schienle</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II).

The overall grade of the module is the average of the grades of these two written examinations.

Prerequisites
Notice: The lecture Statistics I [25008/25009] is part of the preliminary examination concerning Section 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Competence Goal
See German version.

Content
The module contains the fundamental methods and scopes of Statistics.

A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, limit distributions
C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, linear regression

Module grade calculation
The overall grade of the module is the average of the grades of these two written examinations.

Workload
The total workload for this module is approximately 300 hours. For further information see German version.
Module: Logistics and Supply Chain Management [M-MACH-105298]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-110771 | Logistics and Supply Chain Management | 9 CR | Furmans |

Competence Certificate
The assessment consists of a 120 minutes written examination (according to §4(2), 1 of the examination regulation).

Prerequisites
None

Competence Goal
The student

- has comprehensive and well-founded knowledge of the central challenges in logistics and supply chain management, an overview of various practical issues and the decision-making requirements and models in supply chains,
- can model supply chains and logistics systems using simple models with sufficient accuracy,
- identifies cause-effect relationships in supply chains,
- is able to evaluate supply chains and logistics systems based on the methods they have mastered.

Content
Logistics and Supply Chain Management provides comprehensive and well-founded fundamentals for the crucial issues in logistics and supply chain management. Within the scope of the lectures, the interaction of different design elements of supply chains is emphasized. For this purpose, qualitative and quantitative description models are used. Methods for mapping and evaluating logistics systems and supply chains are also covered. The lecture contents are enriched by exercises and case studies and partially the comprehension of the contents is provided by case studies. The interacting of the elements will be shown, among other things, in the supply chain of the automotive industry.

Module grade calculation
grade of the module is grades of the exam

Workload
contact hours (1 HpW = 1 h x 15 weeks):

- lecture: 60 h

independent study:

- preparation and follow-up lectures: 90 h
- preparation of case studies: 60 h
- examination preparation: 60 h

total: 270 h

Recommendation
none

Learning type
Lectures, tutorials, case studies.
Literature
Dieter Arnold et. al.: Handbuch Logistik, 2008
Marc Goetschalk: Supply Chain Engineering, 2011
7.41 Module: Machine Learning and Data Science [M-WIWI-105482]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of:
- Business Administration (Specialisation Program Business Administration)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111028</td>
<td>Introduction to Machine Learning</td>
<td>4,5 CR</td>
<td>Geyer-Schulz, Nazemi</td>
</tr>
<tr>
<td>T-WIWI-111029</td>
<td>Introduction to Neural Networks and Genetic Algorithms</td>
<td>4,5 CR</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination is carried out in the form of partial examinations of the selected courses of the module, with which in total the minimum requirement of credit points is fulfilled. The kind of examination is described in detail for each course of this module.

Prerequisites
None

Competence Goal
The student
- knows the main families of machine learning methods, their basic principles, assumptions and restrictions.
- can use these methods to solve data analysis problems, to support decision making or for process automation in companies and use the solutions interpreted and evaluated accordingly.
- can compare and evaluate the performance of solutions.

Content
The module mainly focuses on methods from statistical learning (linear and logistic learning, regression, tree methods, SVMs, and shrinkage estimators) and from the field of neural and genetic procedures were presented. Furthermore, data transformations and representations (e.g. dimension reduction, clustering, imputation in case of missing data) and visualization techniques and appropriate inference, diagnosis and validation techniques are presented.

Workload
Total effort for 9 credit points: approx. 270 hours. The allocation is based on the credit points of the courses of the module.
7.42 Module: Machine Tools and Industrial Handling [M-MACH-101286]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-MACH-110963</th>
<th>Machine Tools and High-Precision Manufacturing Systems</th>
<th>9 CR</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Competence Certificate
Oral exam (45 minutes)

Prerequisites
None

Competence Goal
The students

- are able to assess the use and application of machine tools and high-precision manufacturing systems and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of machine tools and high-precision manufacturing systems (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of machine tools and high-precision manufacturing systems.
- are capable of selecting and evaluating machine tools and high-precision manufacturing systems according to technical and economic criteria.

Content
The module gives an overview of the construction, use and application of machine tools and high-precision manufacturing systems. In the course of the module a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools and high-precision manufacturing systems is conveyed. First, the main components of the systems are systematically explained and their design principles as well as the integral system design are discussed. Subsequently, the use and application of machine tools and high-precision manufacturing systems will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0 and artificial intelligence.
Guest lectures from industry round off the module with insights into practice.

The individual topics are:

- Structural components of dynamic manufacturing Systems
- Feed axes: High-precision positioning
- Spindles of cutting machine Tools
- Peripheral Equipment
- Machine control unit
- Metrological Evaluation
- Maintenance strategies and condition Monitoring
- Process Monitoring
- Development process for machine tools and high-precision manufacturing Systems
- Machine examples

Workload

regular attendance: 63 hours
self-study: 207 hours

Learning type

Lecture, exercise, excursio
7.43 Module: Management Accounting [M-WIWI-101498]

Responsible: Prof. Dr. Marcus Wouters

Organisation: KIT Department of Economics and Management

Part of: Business Administration (Specialisation Program Business Administration)

Compulsory Elective Modules (Business Administration oder Engineering Sciences)

Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>English</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102800</td>
<td>Management Accounting 1</td>
<td>4,5 CR</td>
<td>Wouters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102801</td>
<td>Management Accounting 2</td>
<td>4,5 CR</td>
<td>Wouters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- are familiar with various management accounting methods,
- can apply these methods for cost estimation, profitability analysis, and product costing,
- are able to analyze short-term and long-term decisions with these methods,
- have the capacity to devise instruments for organizational control.

Content

The module consists of two courses "Management Accounting 1" and "Management Accounting 2". The emphasis is on structured learning of management accounting techniques.

Annotation

The following courses are part of this module:

- The course Management Accounting 1, which is offered in every summer semester
- The course Management Accounting 2, which is offered in every winter semester

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Management and Marketing [M-WIWI-105768]

Responsible: Prof. Dr. Martin Klarmann
Prof. Dr. Hagen Lindstädt
Prof. Dr. Petra Nieken
Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management
Part of: Business Administration (mandatory)

Credits 5 Grading scale Grade to a tenth Recurrence Each winter term Duration 1 term Language German Level 3 Version 2

Mandatory
T-WIWI-111594 Management and Marketing 5 CR Klarmann, Lindstädt, Nieken, Terzidis

Competence Certificate
The module examination is in written form on the two courses "Management" and "Marketing". The examination is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Competence Goal
The student

• has basic knowledge of central issues in business administration,
• has an understanding of problems, interrelationships and solutions in strategic management,
• is able to analyze and evaluate central areas of activity, functions and decisions in a company operating in a market economy,
• has an overview of important marketing-relevant questions and well-founded approaches to their solution.

With the knowledge acquired in the three basic business administration modules, the prerequisites are created in the area of business administration to expand this knowledge in the specialization program.

Content
An understanding of the basic functions of managing businesses is provided. In addition, the basics of marketing are taught.

Workload
Total workload required for 5 credit points: approx. 150 hours
Module: Manufacturing Technology [M-MACH-101276]

- **Responsible:** Prof. Dr.-Ing. Volker Schulze
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:**
 - Engineering Sciences (Specialisation Program Engineering Sciences)
 - Compulsory Elective Modules (Business Administration oder Engineering Sciences)
 - Compulsory Elective Modules (Engineering Sciences)

Credits
- 9

Grading scale
- Grade to a tenth

Recurrence
- Each winter term

Duration
- 1 term

Language
- German

Level
- 3

Version
- 5

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
- Written Exam (180 min)

Prerequisites
- None

Competence Goal
- The students
 - can name different manufacturing processes, can describe their specific characteristics and are capable to depict the general function of manufacturing processes and are able to assign manufacturing processes to the specific main groups.
 - are enabled to identify correlations between different processes and to select a process depending on possible applications.
 - are capable to describe the theoretical basics for the manufacturing processes they got to know within the scope of the course and are able to compare the processes.
 - are able to correlate based on their knowledge in materials science the processing parameters with the resulting material properties by taking into account the microstructural effects.
 - are qualified to evaluate different processes on a material scientific basis.

Content
- Within this engineering sciences-oriented module the students will get to learn principle aspects of manufacturing technology. Further information can be found at the description of the lecture "Manufacturing Technology".

Workload
- regular attendance: 63 hours
- self-study: 207 hours

Learning type
- Lectures, exercise, excursion
Module: Materials Science [M-MACH-101260]

Responsible: Dr.-Ing. Susanne Wagner
Organisation: KIT Department of Mechanical Engineering
Part of: Engineering Sciences (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-MACH-102078 | Materials Science I | 3 CR | Wagner |

Competence Certificate
The assessment of the module is carried out by a written examination (150 min) about the lecture Materials Science (according to Section 4(2), 1 of the examination regulation). The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam. The grade of the module corresponds to the grade of this examination.

Prerequisites
None.

Competence Goal
Students are able to specify the basics of materials science and engineering and can apply it to simple problems in various technical areas.

As major part of the module, the students know the correlation between atomic structure and bonding of solids and the macroscopic properties such as mechanical behavior or electrical conductivity. They have basic knowledge with respect to materials characterization. The students are able to analyze phase diagrams with up to two components and can derive simple correlations among composition, processing, microstructure evolution and materials properties.

Content
After an introduction to the atomic structure and interatomic bonding, elementary concepts of crystallography are given. Different types of crystal structures are explained and various types of imperfections in solids. Then, the mechanical behaviour and the physical properties of various types of materials (metals, polymers, ceramics) are discussed. The thermodynamic principles of solidification and the basic types of phase diagrams are given to understand to iron-carbon phase diagram and the manifold microstructures of steel and cast iron.

Workload
The total workload for this module is approximately 90 hours.
7.47 Module: Mathematics 1 [M-MATH-105754]

Responsible: Prof. Dr. Günter Last
Organisation: KIT Department of Mathematics
Part of: Mathematics

Credits: 10
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German
Level: 3
Version: 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-111492 Mathematics I - Midterm Exam</td>
<td>5 CR</td>
<td>Hug, Last, Nestmann, Winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-111493 Mathematics I - Final Exam</td>
<td>5 CR</td>
<td>Hug, Last, Nestmann, Winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of two written exams of 90 min each (in accordance with §4(2), 1 of the examination regulations). The first (midterm) exam takes place after half of the course, the second (final) exam takes place shortly after the end of the lectures. Auxiliary means such as literature or calculators are not allowed.
Resit exams for both exams are offered in the first weeks of the subsequent semester. Both resit exams will take place on the same day.
Candidates who have not passed the corresponding midterm or final exam, as well as those who have not yet taken a first attempt, will be eligible for the resit exams.
Oral re-examinations (in accordance with §9(1) of the examination regulations) for the midterm or final exam take place as individual examinations.
Both the midterm and final exams must be passed individually.

Prerequisites
none

Competence Goal
Students

- are confident with basic terms and definitions of mathematical language (propositions, sets, number systems, mappings, etc.),
- have a basic knowledge of differentiable calculus for functions of a single variable,
- know basic concepts of matrix theory,
- have a basic knowledge of integral calculus in a single variable.

Content
The course Mathematics 1 is the first part of the three semester basic training in higher mathematics. Topics are

- Propositional logic and basic set theory,
- Combinatorics and principles of counting,
- Number systems and basic arithmetics,
- Convergence of sequences and series,
- Continuous functions,
- Differentiable functions,
- Power series and special functions,
- Taylor’s theorem,
- Riemann integral,
- n-dimensional vector spaces,
- Systems of linear equations,
- Scalar product, length and angle,
- Linear mappings and matrices,

Module grade calculation
The examination mark for Mathematics 1 is the average of the marks obtained in the midterm exam and final exam.
Workload
Work load: 300 hours (10 ETCS)
Classes: 150 hours
Preparation of courses and examinations: 150 hours

Recommendation
There are no prerequisites. It is strongly recommended to attend the three maths courses in the order Mathematics 1, Mathematics 2, Mathematics 3.

Literature
There are no Prerequisites. We strongly recommend to attend the three maths courses in the order Mathematics 1, Mathematics 2, Mathematics 3.
Module: Mathematics 2 [M-MATH-105756]

Responsible: Prof. Dr. Günter Last
Organisation: KIT Department of Mathematics
Part of: Mathematics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Grade</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-111495</td>
<td>Mathematics II - Midterm Exam</td>
<td>3.5 CR</td>
<td>Hug, Last, Nestmann, Winter</td>
</tr>
<tr>
<td>T-MATH-111496</td>
<td>Mathematics II - Final Exam</td>
<td>3.5 CR</td>
<td>Hug, Last, Nestmann, Winter</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of two written exams of 75 min each (in accordance with §4(2), 1 of the examination regulations). The first exam (midterm exam) takes place after half of the course, the second exam (final exam) takes place shortly after the end of the lectures. Auxiliary means such as literature or calculators are not allowed.

Resit exams for both exams are offered in the first weeks of the subsequent semester. Both resit exams will take place on the same day.

Eligible for the resit exams are all candidates who either have not passed the corresponding midterm or final exam, or have not yet taken a first attempt.

Oral re-examinations (in accordance with §9(1) of the examination regulations) for the midterm or final exam take place as individual examinations.

Both the midterm and final exam must be passed individually.

Competence Goal

Students

- have a basic knowledge of determinants and eigenvalue theory,
- have a basic knowledge of multivariate differential calculus,
- have a basic knowledge of integrals of functions in several variables

Content

The course Mathematics 2 is the second part of the three semester basic training in higher mathematics. Topics are

- determinants,
- eigenvalue theory,
- multivariate calculus,
- multiple integrals,
- normed vector spaces and Banach's fixed point theorem.

Module grade calculation

The examination mark for Mathematics 2 is the average of the marks obtained in the midterm exam and final exam.

Workload

Work load: 210 hours (7 ETCS)
Classes: 120 hours
Preparation of courses and examinations: 90 hours

Recommendation

There are no prerequisites. It is strongly recommended to attend the three maths courses in the order Mathematics 1, Mathematics 2, Mathematics 3.
Competence Certificate
The assessment consists of a written exam of 75 min (in accordance with §4(2), 1 of the examination regulations). The exam takes place shortly after the end of the lectures. Auxiliary means such as literature or calculators are allowed. A resit exam is offered in the first weeks of the subsequent semester. Candidates who have not passed the exam, as well as those who have not yet taken a first attempt, will be eligible for the resit exam. Oral re-examinations (in accordance with §8(2) of the examination regulations) for the written exam take place as individual examinations.

Competence Goal
Students
- are confident with important concepts in the theory of normed vector spaces,
- have some basic knowledge of ordinary differential equations,
- have some basic knowledge of Fourier analysis.

Content
The course Mathematics 3 is the third part of the three semester basic training in higher mathematics. Topics are
- normed spaces and Banach's fixed point theorem (if not treated in Mathematics 2),
- ordinary differential equations,
- linear differential equations,
- Fourier analysis,
- integral transformations.

Module grade calculation
The module grade is the grade of the written exam.

Workload
Work load: 120 hours (4 ETCS)
Classes: 60 hours
Preparation of courses and examinations: 60 hours

Recommendation
There are no prerequisites. It is strongly recommended to attend the three maths courses in the order Mathematics 1, Mathematics 2, Mathematics 3.
7.50 Module: Measurement, Control, and Manufacturing Measurement Technology [M-ETIT-106581]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Prof. Dr.-Ing. Sören Hohmann

Organisation:
- KIT Department of Electrical Engineering and Information Technology
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

Credits: 9

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German

Level: 3

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-112852</td>
<td>Measurement and Control Technology</td>
<td>6 CR</td>
<td>Heizmann, Hohmann</td>
</tr>
<tr>
<td>T-ETIT-106057</td>
<td>Manufacturing Measurement Technology</td>
<td>3 CR</td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Competence Certificate

MRT:
The success control takes place in the form of a written examination of 120 minutes.

FMT:
The success control takes place in the form of a written examination of 90 minutes. If there are less than 20 examinees, an oral examination of approx. 20 minutes can be taken as an alternative. The module grade is the grade of the written or oral examination.

Prerequisites
none

Competence Goal

MRT:
- Students have a sound knowledge of the theoretical fundamentals of measurement technology, including scaling of measured quantities, the SI system of units, model building for measurement systems, description and treatment of systematic and stochastic measurement deviations, obtaining and linearizing measurement characteristics and propagation of measurement uncertainties.
- Students master the procedure for the basic design of measurement systems, taking into account the above knowledge.
- Students are able to analyze tasks in measurement technology, synthesize possible solutions for measurement systems and assess the properties of the solution obtained.
- The aim is to teach the basics of control engineering, therefore students are able to recognize and work on basic control engineering problems. They know the relevant technical terms.
- Students are able to formally describe real processes and to derive requirements for control structures in the time and image domain for fixed value and sequential control systems.
- Students are able to analyze the dynamics of systems using graphical and algebraic methods.
- Students will be able to name controller design methods for single-loop, single-variable systems. They will be able to design perfect closed-loop and open-loop control systems.
- They can perform design steps using the Nyquist criterion and the Wurzelortz curve.
- Students can name structures for disturbance compensation, of multi-loop control loops and two degrees of freedom structures and perform design steps for them.
- Students can digitize closed-loop and open-loop controls designed in the image domain using fast sampling design.
- Students are familiar with computer-aided design procedures and can carry out substeps in them.

FMT:
- Students have sound knowledge of fundamentals, methods and procedures for measuring and testing in industrial manufacturing.
- Students are able to evaluate different measuring principles, methods and devices with regard to their prerequisites, characteristics, areas of application and results.

Students are able to analyze production measurement tasks, derive the resulting requirements for a suitable metrological implementation, find suitable metrological implementations and point out the resulting properties of the measurement result....
Content

MRT:

- Description of measured quantities
 - Metric quantities and their properties
 - SI system of units
- Structure of measuring systems
- Measurement deviations
 - Systematic and stochastic deviations
- Curve fitting
 - Interpolation
 - Approximation
- Characteristic curves and their errors
 - Linearization of characteristic curves
 - Treatment of disturbance variables
- Uncertainty propagation
 - Error propagation
 - Guide to the Expression of Uncertainty in Measurement (GUM)
- Basic concepts of control engineering
 - Control loops
 - Control structures
 - Embedding in automation structures
- Description of systems in time and image domain
 - State space representation
 - Derivation of an I/O representation
 - Signal flow diagrams and control loop elements
 - Realization of controllers (analog and digital)
- Analysis of control loops in time and image domain
 - Stationary accuracy
 - Stability
 - Dynamics (bandwidth)
 - Robustness
- Design of single loop control loops
 - Perfect control
 - Design with the Nyquist criterion
 - Root locus curve
 - Heuristics
- Design of extended control loop structures
 - disturbance compensation
 - Meshing
 - Two degrees of freedom structure

FMT:

Manufacturing metrology plays an essential role in ensuring efficient industrial manufacturing. To a certain extent, it represents the sensory organs for quality assurance and automation technology and encompasses all activities associated with measurement and testing.

Based on the methodological fundamentals, which are the subject of the compulsory lecture "Measurement Technology", the lecture teaches procedures and implementations for measurement and testing in industrial practice. The focus is on geometric properties; most of the concepts presented can also be applied to other properties. Sensor systems for the measurement of geometric properties are presented and discussed with their characteristic properties.

The contents include in detail:

- Fundamentals of FMT
 - Basic terms, definitions
 - Dimensional standards
 - Measurement uncertainties
- Measurement technology in operation and in the measuring room
 - Coordinate metrology
 - Form and position metrology
 - Surface and contour metrology
 - Comparators
 - Micro and nano metrology
 - Measuring rooms
- Production-oriented metrology
 - Measuring equipment and gauges
 - Measuring devices
 - Measuring in the machine
 - Visual inspection
- Statistical process control (SPC)
- Optical/non-contact measuring methods
 - Integratable optical sensors
 - Stand-alone optical measurement systems
 - Optical 2.5D coordinate measuring technology
 - Optical 3D coordinate metrology
 - Computed tomography
 - System integration and standardization
- Gauge management
 - Significance and correlations
 - Controlled inspection processes
- Inspection planning

Module grade calculation
The module grade is the average of both examination grades weighted by credit points.

Workload
MRT:
Total: approx. 180h, of which

1. Attendance time in lectures and exercises: 60h
2. Preparation and follow-up of the lectures and exercises: 60 hours
3. Exam preparation and presence in the same: 60h

FMT:
Total: approx. 90h, of which

1. attendance time in lectures: 23h
2. preparation of lectures: 23h
3. exam preparation and presence in the exam: 44h

Recommendation
MRT:
Knowledge of “Signale und Systeme” is helpful.

FMT:
Knowledge of stochastics and fundamentals of measurement techniques is helpful.
7.51 Module: Mechanical Design A [M-MACH-106527]

Responsible: Prof. Dr.-Ing. Tobias Düser
Prof. Dr.-Ing. Sven Matthiesen

Organisation: KIT Department of Electrical Engineering and Information Technology
KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112984</td>
<td>Mechanical Design A</td>
<td>7 CR</td>
</tr>
<tr>
<td>T-MACH-112981</td>
<td>Mechanical Design A, Workshop</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Compensation Certificate
See individual courses

Prerequisites
None

Competence Goal
In mechanical design, students acquire skills in analysis and synthesis using examples. These include both individual machine elements such as bearings or springs and more complicated systems such as gears or couplings. After completing the machine design theory, the students are able to apply the contents learned to other technical systems - even those not known from the lecture - by transferring the principles of action and basic functions learned from examples to other contexts. This enables students to independently analyze unknown technical systems and synthesize suitable systems for given problems.

Content
MD A

- Springs
- Technical Systems
- Bearings
- Sealing
- Component Joints
- Gears

Module grade calculation
The module grade ist the grade of the written exam.

Annotation
None

Workload
MKL A: Total workload: 270 h, thereof attendance 75 h, divided into lecture + exercise: 4 SWS -> 60 h as well as workshop: 1 SWS -> 15 h; self-study 195 h

Recommendation
None

Learning type
Lectures, exercises and semester-long workshops as well as project work

Literature

oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
7 MODULES

Module: Mechanical Design A [M-MACH-106527]

Base for
None
7.52 Module: Mechatronic Product Design [M-MACH-106236]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation:
KIT Department of Mechanical Engineering

Part of:
Engineering Sciences (Specialisation Program Engineering Sciences)
Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112647</td>
<td>Mechatronical Systems and Products (mach/etit/wiwi)</td>
<td>4 CR</td>
<td>Hohmann, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-112648</td>
<td>Workshop Mechatronical Systems and Products (mach/etit/wiwi)</td>
<td>5 CR</td>
<td>Hohmann, Matthiesen</td>
</tr>
</tbody>
</table>

Competence Certificate
Success is monitored within the framework of an written examination (60 minutes) and an alternative academic achievement

Prerequisites
None

Competence Goal
The students

- are able to describe the difficulties of interdisciplinary projects.
- are able to coordinate processes, structures, responsibilities and interfaces within a project
- know different solutions for mechanic/electric problems
- know the elements of the treated product development processes, are able to describe different views onto them and execute them
- know the model based systems engineering approaches
- know the basic principles of virtual design and are able to apply the methods of virtual system design
- are able to identify the differences between virtuality and reality
- are able to recognize the advantages of early validation
- Students are able to understand and apply model description with Bond graphs and generalized system elements
- Students are able to synthesize and analyze multi-domain models
- Students are able to apply parameter identification methods

Content
The lecture provides the theoretic basics, which will be applied and enhanced in development project during the semester. The project will take part in small groups, where the students have to organize and distribute the tasks on their own. In the project work - the workshop Mechatronical Systems and Products - they work on a development task in teams. This involves various development phases, from the development of technical solution concepts to the development and validation of virtual prototypes and physical functional prototypes.

Module grade calculation
The module grade is composed in equal parts of the grades of the module's sub-services.

Annotation
All relevant content (scripts, exercise sheets, etc.) for the course can be obtained via the eLearning platform ILIAS. To participate in the course, please complete the survey "Anmeldung und Gruppeneinteilung" in ILIAS before the start of the semester.

Workload
1. Time of presence lecture: 17 * 1.5 h = 25.5 h
2. Prepare/follow-up lecture: 17 * 1.5 h = 25.5 h
3. Time of presence exercise + workshop: 4 * 1.5h + 12 * 7h = 90 h
4. Prepare/follow-up exercise: 4 * 1.5h = 6 h
5. Exam preparation and time of presence: 33 h
Total: 180 h = 6 LP
Recommendation
It is recommended not to take this module with other time-consuming workshops, such as MD, at the same time.

Learning type
Lecture, exercise and project work

Literature
Module: Methodical Foundations of OR [M-WIWI-101414]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: Operations Research (Specialisation Program Operations Research)
Compulsory Elective Modules (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 1 item as well as between 4.5 and 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I</td>
<td>4.5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Global Optimization I and II</td>
<td>9 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I</td>
<td>4.5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nonlinear Optimization I and II</td>
<td>9 CR</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Introduction to Stochastic Optimization</td>
<td>4.5 CR</td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Global Optimization II</td>
<td>4.5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nonlinear Optimization II</td>
<td>4.5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

At least one of the courses *Nonlinear Optimization I* [2550111] and *Global Optimization I* [2550134] has to be examined.

Competence Goal

The student

- names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions.

Content

The module focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat approaches for global solutions.

Annotation

The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu).

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

The courses Introduction to Operations Research I and II are helpful.
Module: Microsystem Technology [M-MACH-101287]

Responsible: Prof. Dr. Jan Gerrit Korvink
Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mikrosystemtechnik (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>3 CR</td>
<td>Guber</td>
</tr>
<tr>
<td>T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>3 CR</td>
<td>Guber</td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td>3 CR</td>
<td>Badilita, Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td>3 CR</td>
<td>Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-101910</td>
<td>Microactuators</td>
<td>3 CR</td>
<td>Kohl</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-ETIT-101907</td>
<td>Optoelectronic Components</td>
<td>4 CR</td>
<td>Freude</td>
</tr>
<tr>
<td>T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>6 CR</td>
<td>Dienwiebel, Gumbsch, Nesterov-Müller, Weygand</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Practical Training in Basics of Microsystem Technology</td>
<td>3 CR</td>
<td>Last</td>
</tr>
<tr>
<td>T-MACH-111807</td>
<td>Introduction to Bionics</td>
<td>3 CR</td>
<td>Hölscher</td>
</tr>
<tr>
<td>T-MACH-108312</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>4 CR</td>
<td>Last</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams
(according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
none

Competence Goal
construction and production of e. g. mechanical, optical, fluidic and sensory microsystems.

Content
The module offers courses in microsystem technology. Knowledge is imparted in various fields like basics in construction and production of e. g. mechanical, optical, fluidic and sensory microsystems.

Workload
270 hours
7.55 Module: Mobile Machines [M-MACH-101267]

Responsible: Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 CR</td>
<td></td>
<td>Each winter term</td>
<td>2 terms</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

Mobile Machines (Election: at least 1 credit)

T-MACH-105168	Mobile Machines	9 CR	Geimer
T-MACH-105307	Drive Train of Mobile Machines	4 CR	Geimer, Wydra
T-MACH-105311	Design and Development of Mobile Machines	4 CR	Geimer, Siebert
T-MACH-108887	Design and Development of Mobile Machines - Advance	0 CR	Geimer, Siebert
T-MACH-102093	Fluid Power Systems	5 CR	Geimer
T-MACH-111389	Fundamentals in the Development of Commercial Vehicles	3 CR	Weber
T-MACH-105172	Simulation of Coupled Systems	4 CR	Geimer
T-MACH-108888	Simulation of Coupled Systems - Advance	0 CR	Geimer, Xiang
T-MACH-111821	Control of Mobile Machines	4 CR	Becker, Geimer
T-MACH-111820	Control of Mobile Machines – Prerequisites	0 CR	Becker, Geimer

Competence Certificate

The assessment is carried out as a general oral exam (duration approx. 60 mins) (according to Section 4(2), 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the grade of the oral examination.

The assessment may be carried out as partial oral exams (according to Section 4(2), 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. In this case the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

The assessment procedures are described for each course of the module separately.

Prerequisites

Successful passing of the corresponding modules of the basic program.

Competence Goal

The student

- knows and understands the basic structure of the machines
- masters the basic skills to develop the selected machines

Content

In the module of Mobile Machines [WI4INGMB15] the students will learn the structure of the machines and deepen the knowledge of the subject for developing the machines. After conclusion the module the student will know the latest developments in mobile machines and is able to evaluate the concepts and the trends of developments. The module is practically orientated and supported by industry partners.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

Knowledge of Fluid Power Systems are helpful, otherwise it is recommended to take the course Fluid Power Systems [2114093].
Module: Mobility and Infrastructure [M-BGU-101067]

- **Responsible:** Prof. Dr.-Ing. Peter Vortisch
- **Organisation:** KIT Department of Civil Engineering, Geo and Environmental Sciences
- **Part of:**
 - Engineering Sciences (Specialisation Program Engineering Sciences)
 - Compulsory Elective Modules (Business Administration oder Engineering Sciences)
 - Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Every summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101791</td>
<td>Mobility and Infrastructure</td>
<td>9 CR</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Prerequisites

None

Annotation

None

Recommendation

For students from the KIT-Department of Economics and Management it is recommended to take part in the exercises.
7.57 Module: Module Bachelor’s Thesis [M-WIWI-101601]

Responsible: Studiendekan des KIT-Studienganges
Organisation: KIT Department of Economics and Management
Part of: Bachelor’s Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-103067 | Bachelor’s Thesis | 12 CR | Studiendekan des KIT-Studienganges |

Competence Certificate

The Bachelor’s thesis is a written piece of work that demonstrates that the student is capable of dealing with a problem from their subject in an academic manner. It is regulated in detail in 14 SPO 2015.

The thesis is supervised and assessed by at least two KIT examiners. At least one of the examiners must be a professor and usually an examiner at the KIT Department of Economics and Management.

The regular processing time is 6 months. Upon justified request by the student, the examination board can extend the processing time by a maximum of one month. If the Bachelor’s thesis is not completed and submitted to the examiner by the deadline, it will be graded as “insufficient” unless the student is not responsible for this failure (e.g. maternity leave).

The Examination Board determines the languages in which the Bachelor’s thesis can be written. At the student’s request, the examiner may authorize the Bachelor’s thesis to be written in a language other than German. The topic can only be returned once and only within the first month of the completion period. A new topic must be submitted and issued within four weeks.

If the thesis is not passed, it may be repeated once. A new topic must be issued. The same topic may not be repeated. This also applies to comparable topics. In case of doubt, the examination board will decide. The new topic may again be supervised by the examiners of the first thesis.

This regulation also applies analogously after an official withdrawal from a registered topic.

The module grade is the grade for the Bachelor’s thesis.

Prerequisites

Prerequisites for admission to the Bachelor Thesis: minimum of 120 credits must be earned. All module examinations of the basic program must be passed.

At the request of the student, the examination committee decides on exceptions to these regulations.

It is recommended to begin the Bachelor Thesis in the 5th or 6th Semester.

A written confirmation of the examiner about supervising the Bachelor’s Thesis is required.

Please pay regard to the institute specific rules for supervising a Bachelor Thesis.

The Bachelor Thesis has to contain the following declaration in German:

„Ich versichere wahrhaftig, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.”

If this declaration is not given, the Bachelor Thesis will not be accepted.

Competence Goal

The student can independently work on a relevant topic in accordance with scientific criteria within the specified time frame.

He/she is in a position to research, analyze the information, abstract and identify basic principles and regulations from less structured information.

He/she reviews the task ahead, can select scientific methods and techniques and apply them to solve a problem or identify further potential. This is basically also done under consideration of social and/or ethical aspects.

He/she can interpret, evaluate and if required, graphically present the obtained results.

He/she is in a position to clearly structure a research paper and communicate in writing using the technical terminology.

Content

The Bachelor Thesis is the first major scientific work. The topic of the Bachelor Thesis will be chosen by the student themselves and adjusted with the examiner. The topic has to be related to Industrial Engineering and Management and has to refer to subject-specific or interdisciplinary problems.
Workload

The preparation and presentation of the Bachelor's thesis is expected to take a total of approx. 360 hours. In addition to writing the thesis, this figure includes all necessary activities such as literature research, familiarization with the topic, familiarization with any necessary tools, conducting studies/experiments, supervision meetings, etc.
Module: Optimization under Uncertainty [M-WIWI-103278]

Responsible: Prof. Dr. Steffen Rebennack

Organisation: KIT Department of Economics and Management

Part of:
- Operations Research (Specialisation Program Operations Research)
- Compulsory Elective Modules (Operations Research)

Credits: 9

Grading scale: Grade to a tenth

Recurrence: Each term

Duration: 1 term

Language: German

Level: 3

Version: 4

Compulsory Elective Courses (Election: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Introduction to Stochastic Optimization</td>
<td>4,5 CR</td>
<td></td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimization under Uncertainty</td>
<td>4,5 CR</td>
<td></td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I</td>
<td>4,5 CR</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>4,5 CR</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

At least one of the courses `Introduction to Stochastic Optimization` and `Optimization approaches under uncertainty` has to be taken.

Competence Goal

The student

- denotes and describes basic notions for optimization methods under uncertainty, in particular from stochastic optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems under uncertainty and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions, in particular of stochastic optimization problems.

Content

The module focuses on modeling and analyzing mathematical optimization problems where certain data is not fully present at the time of decision-making. The lectures on the introduction to stochastic optimization deal with methods to integrate distribution information into the mathematical model. The lectures on the optimization approaches under uncertainty offer alternative approaches such as robust optimization.

Annotation

The curriculum, planned for three years in advance, can be found on the Internet at http://sop.ior.kit.edu/28.php.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.

Recommendation

Knowledge from the lectures “Introduction to Operations Research I” and “Introduction to Operations Research II” are helpful.
7.59 Module: Power Network [M-ETIT-102379]

Responsible: Dr.-Ing. Bernd Hoferer
Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Engineering Sciences (Specialisation Program Engineering Sciences) (Usage until 9/30/2024)
Compulsory Elective Modules (Business Administration oder Engineering Sciences) (Usage until 9/30/2024)
Compulsory Elective Modules (Engineering Sciences) (Usage until 9/30/2024)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101923</td>
<td>Electric Energy Systems</td>
<td>4</td>
<td>Leibfried</td>
</tr>
<tr>
<td>T-ETIT-100830</td>
<td>Power Network</td>
<td>5</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>
7.60 Module: Preliminary Exam [M-WIWI-100950]

Organisation: University
Part of: Preliminary Exam

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102708</td>
<td>Economics I: Microeconomics</td>
<td>5 CR</td>
<td>Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102737</td>
<td>Statistics I</td>
<td>5 CR</td>
<td>Grothe, Schienle</td>
</tr>
</tbody>
</table>

Modelled deadline
This module must be passed until the end of the 3. term.

Prerequisites
none
Module: Product Lifecycle Management [M-MACH-101270]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Product Lifecycle Management (Kernbereich) (Election: 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Product Lifecycle Management (Election: at least 5 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102187</td>
<td>CAD-NX Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-111283</td>
<td>Development Methods of Technical Systems</td>
<td>4 CR</td>
<td>Maier, Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102209</td>
<td>Information Engineering</td>
<td>3 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-106457</td>
<td>Industry 4.0 Systems Platform</td>
<td>4 CR</td>
<td>Maier, Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>4 CR</td>
<td>Mbang</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The students should:

- have basic knowledge about the challenges in product and process data management regarding the whole product lifecycle;
- have understanding about challenges and functional concepts of product lifecycle management;
- be able to rudimental operate common PLM/CAx/VR - systems,
- develop and present prototype solutions in teams of different domains.

Content
Product Lifecycle Management (PLM), Generation and management of information, Architecture and functionality of information systems, Industry 4.0, CAx and VR-systems.

Workload
270 hours

Learning type
Lectures, Tutorials
7.62 Module: Production Engineering [M-MACH-106590]

Responsible: Prof. Dr.-Ing. Volker Schulze
Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Production Engineering (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110176</td>
<td>Digitalization from Production to the Customer in the Optical Industry</td>
<td>4</td>
<td>Wawerla</td>
</tr>
<tr>
<td>T-MACH-110991</td>
<td>Global Production</td>
<td>5</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>4</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-112115</td>
<td>Artificial Intelligence in Production</td>
<td>5</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105783</td>
<td>Learning Factory "Global Production"</td>
<td>6</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Laboratory Production Metrology</td>
<td>5</td>
<td>Lanza, Stamer</td>
</tr>
<tr>
<td>T-MACH-110318</td>
<td>Product- and Production-Concepts for Modern Automobiles</td>
<td>4</td>
<td>Kienzle, Steegmüller</td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Production Technology for E-Mobility</td>
<td>4</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Project Internship Additive Manufacturing: Development and Production of an Additive Component</td>
<td>4</td>
<td>Zanger</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Quality Management</td>
<td>4</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-112121</td>
<td>Seminar Application of Artificial Intelligence in Production</td>
<td>4</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Control Technology</td>
<td>4</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-113372</td>
<td>Strategic Decision-Making in Global Production Network Design: A Seminar on Optimization and Simulation</td>
<td>4</td>
<td>Benfer, Lanza</td>
</tr>
<tr>
<td>T-MACH-105177</td>
<td>Metal Forming</td>
<td>4</td>
<td>Herlan</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Gear Cutting Technology</td>
<td>4</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Prerequisites
The module M-MACH-101284 - Production Technology must not have been started.

Competence Goal
The students
- are able to apply the methods of production science to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques for a specific problem.
- are able to use their knowledge target-oriented to achieve an efficient production technology.
- are able to analyze new situations and choose methods of production science target-oriented based on the analyses, as well as justifying their selection.
- are able to describe and compare complex production processes exemplarily.

Content
Within this module the students will get to know and learn about production science. Manifold lectures and excursions as part of several lectures provide specific insights into the field of production science.

Workload
The work load is about 270 hours, corresponding to 9 credit points.
Learning type
Lectures, seminars, workshops, excursions
7.63 Module: Production, Logistics and Information Systems [M-WIWI-105770]

Responsible:
- Prof. Dr. Wolf Fichtner
- Prof. Dr. Andreas Geyer-Schulz
- Prof. Dr. Alexander Mädche
- Prof. Dr. Stefan Nickel
- Prof. Dr. Frank Schultmann
- Prof. Dr. Christof Weinhardt

Organisation:
KIT Department of Economics and Management

Part of:
Business Administration (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 CR</td>
<td>T-WIWI-111602 Production, Logistics and Information Systems</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination is in written form. The examination is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Competence Goal
The student
- has basic knowledge of the interaction of information technologies, people and organizational structures,
- is familiar with the structures of information systems,
- masters the essential concepts, theories and methods of production management,
- has an understanding of problems, interrelationships and solutions of logistics processes of enterprises.

With the knowledge acquired in the three basic modules BWL, the prerequisites are created in the area of BWL to expand this knowledge in the specialization program.

Content
The basics of business informatics are taught. In addition, the area of production management and logistics is introduced.

Workload
Total workload required for 5 credit points: approx. 150 hours
7.64 Module: Public and Civil Law [M-INFO-105084]

Responsible: N.N.
Organisation: KIT Department of Informatics
Part of: Compulsory Elective Modules (Law or Sociology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103339</td>
<td>Civil Law for Beginners</td>
<td>5 CR</td>
<td>Matz</td>
<td></td>
</tr>
<tr>
<td>T-INFO-110300</td>
<td>Public Law I & II</td>
<td>6 CR</td>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place in every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Workload
See German version.
7.65 Module: Public Finance [M-WIWI-101403]

- **Responsible:** Prof. Dr. Berthold Wigger
- **Organisation:** KIT Department of Economics and Management
- **Part of:** Economics (Specialisation Program Economics)
 - Compulsory Elective Modules (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102877</td>
<td>Introduction to Public Finance</td>
<td>4,5 CR</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4,5 CR</td>
<td>Gutekunst, Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4,5 CR</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112721</td>
<td>Public Economics</td>
<td>4,5 CR</td>
<td>Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

See German version.

Content

As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs. Special fields of Public Finance are public revenues, i.e. taxes and public debt, public expenditures for publicly provided goods, and welfare programs.

Annotation

The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

It is recommended to attend the course 2560129 after having completed the course 2560120.
7.66 Module: Rail System Technology [M-MACH-101274]

Responsibility: Prof. Dr.-Ing. Martin Cichon
Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

Credits: 9
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 1 term
Language: German
Level: 4
Version: 5

Mandatory
T-MACH-102143 Rail System Technology 9 CR Cichon

Competence Certificate
written examination in German language
Duration: 120 minutes
No tools or reference materials may be used during the exam except calculator and dictionary

Competence Goal

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- Based on operating requirements and legal framework they derive the requirements concerning a capable infrastructure and suitable concepts of rail vehicles.
- They recognize the impact of alignment, understand the important function of the wheel-rail-contact and estimate the impact of driving dynamics on the operating program.
- They evaluate the impact of operating concepts on safety and capacity of a rail system.
- They know the infrastructure to provide power supply to rail vehicles with different drive systems.
- The students learn the role of rail vehicles and understand their classification. They understand the basic structure and know the functions of the main systems. They understand the overall tasks of vehicle system technology.
- They learn functions and requirements of car bodies and judge advantages and disadvantages of design principles. They know the functions of the car body’s interfaces.
- They know about the basics of running dynamics and bogies.
- The students learn about advantages and disadvantages of different types of traction drives and judge, which one fits best for each application.
- They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
- They know the basic setup of train control management system and understand the most important functions.
- They specify and define suitable vehicle concepts based on requirements for modern rail vehicles.
Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations
8. Vehicle system technology: structure and main systems of rail vehicles
9. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
10. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
11. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
12. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
13. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Annotation
A bibliography is available for download (Ilias-platform).
The lectures can be attended in the same term.

Workload

1. Regular attendance: 42 hours
2. Self-study: 42 hours
3. Exam and preparation: 186 hours

Learning type
Lectures
7.67 Module: Seminar Module [M-WIWI-101816]

Responsible: Studiendekan des KIT-Studienganges
Organisation: KIT Department of Economics and Management
Part of: Compulsory Elective Modules (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 3 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103486</td>
<td>Seminar in Business Administration (Bachelor)</td>
<td>3 CR</td>
<td>Professorenschaft des Fachbereichs Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>T-WIWI-103485</td>
<td>Seminar in Informatics (Bachelor)</td>
<td>3 CR</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
<tr>
<td>T-WIWI-108763</td>
<td>Seminar in Engineering Science Master (approval)</td>
<td>3 CR</td>
<td>Fachvertreter ingenieurwissenschaftlicher Fakultäten</td>
</tr>
<tr>
<td>T-MATH-102265</td>
<td>Seminar in Mathematics (Bachelor)</td>
<td>3 CR</td>
<td>Folkers, Last</td>
</tr>
<tr>
<td>T-WIWI-103488</td>
<td>Seminar in Operations Research (Bachelor)</td>
<td>3 CR</td>
<td>Nickel, Rebennack, Stein</td>
</tr>
<tr>
<td>T-INFO-101997</td>
<td>Seminar: Legal Studies I</td>
<td>3 CR</td>
<td>N.N.</td>
</tr>
<tr>
<td>T-WIWI-103489</td>
<td>Seminar in Statistics (Bachelor)</td>
<td>3 CR</td>
<td>Grothe, Schienle</td>
</tr>
<tr>
<td>T-WIWI-103487</td>
<td>Seminar in Economics (Bachelor)</td>
<td>3 CR</td>
<td>Professorenschaft des Fachbereichs Volkswirtschaftslehre</td>
</tr>
<tr>
<td>T-MACH-102135</td>
<td>Conveying Technology and Logistics</td>
<td>3 CR</td>
<td>Furmans, Pagani</td>
</tr>
<tr>
<td>T-MACH-109062</td>
<td>Seminar Production Technology</td>
<td>3 CR</td>
<td>Fleischer, Lanza, Schulze</td>
</tr>
<tr>
<td>T-MACH-108737</td>
<td>Seminar Data-Mining in Production</td>
<td>3 CR</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Competence Certificate

SPO 2015: The modul examination consists of one seminar (according to §4 (3), 3 of the examintaion regulation). A detailed description of the assessment is given in the specific course characterization.

SPO 2007: The modul examination consists of two seminars and of at least one key qualification (KQ) course (according to §4 (3), 3 of the examintaion regulation). As key qualification one of the following courses must be chosen: Academic Learning HoC (2-3 credits), Key Qualifikations ZAK (1-3 credits), Elective „Educational development for student teachers“ (2-3 credits) or language courses SpZ. A detailed description of every singled assessment is given in the specific course characterization.

Prerequisites

All modules of the basic program should be completed. For further information see German version.

Competence Goal

- Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.
- They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.
- They can solve the problems in a structured manner using their interdisciplinary know-how.
- They know how to validate the obtained results.
- Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.
- Students are familiar with the DFG’s Code of Conduct “Guidelines for Safeguarding Good Research Practice” and base their scientific work on it.
Content
Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor. Beside advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section "Key Qualifications" of the module handbook. Furthermore, the module also includes additional key qualifications provided by the KQ-courses.

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Workload
See German version.
7.68 Module: Signals and Systems [M-ETIT-106372]

Responsible: Dr.-Ing. Mathias Kluwe
Prof. Dr.-Ing. Sander Wahls

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Engineering Sciences (Specialisation Program Engineering Sciences)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-112860</td>
<td>Signals and Systems</td>
<td>7</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-112861</td>
<td>Signals and Systems - Workshop</td>
<td>2</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of success takes place in the form of a written examination lasting 120 minutes. In addition, the completion of the written work in the workshop is a prerequisite for passing the module.

Prerequisites
none

Competence Goal
The students master the basics, properties and calculation rules of the Laplace transformation and can apply these to solve linear differential equations.

- The students are able to use the Laplace transformation to describe time-continuous dynamic systems.
- The students know some basics of complex analysis in the context of integral transformations such as Laurent expansion and theorem of residuals.
- The students know the complex inverse formula of the Laplace transformation and can use it for complicated image functions.
- The students know the two-sided Laplace transformation and master the basics, properties and calculation rules of the Fourier transformation.
- Students can use the Fourier transformation to describe time-continuous signals in the frequency domain.
- Students are familiar with the sampling theorem for converting time-continuous into time-discrete signals and can use the discrete Fourier transform to describe time-discrete signals in the frequency domain.
- The students are familiar with the basics, properties and calculation rules of the z-transformation.
- Students can use the z-transformation to describe time-discrete systems.
Content

- Laplace transform
 - Motivation and Definition
 - Properties and Examples
- Laplace transform of ordinary differential equations
 - Ordinary and generalized differentiation rule
 - Laplace transform of general linear differential equations with constant coefficients
 - Back transformation via the partial fraction decomposition of rational functions
 - Calculation rules of the Laplace transform (1): Integration rule and damping rule
 - Back transformation over the convolution rule of the Laplace transformation
 - Calculation rules of the Laplace transform (2): Displacement rules and limit theorems
- Characterization of the transfer behavior of dynamic systems with transfer and weight function
- Function theory: Laurent expansion, residual and residual theorem
- Complex inversion formula of the Laplace transformation
 - Derivation of the complex inverse formula
 - Calculation of the complex inverse integral
- Two-sided Laplace Transform and Fourier Transform
 - Two-sided Laplace Transform
 - Definition and properties of the Fourier transform
 - Calculation rules and correspondences of the Fourier transform
- z-Transform
 - Definition, properties and calculation rules of the z-transform
 - Use for the solution of difference equations
- Mathematical basics: Spaces
- Time-continuous signals
 - Fourier series
 - Fourier transform
 - Test signals
 - General signal properties
- Continuous-time systems
 - Properties
 - System description by differential equations
 - Laplace transform
 - System function
 - Frequency selective filters
- Discrete-Time Signals
 - Fourier transform of discrete-time signals
 - Sampling theorem
 - Discrete Fourier Transform
- Discrete-Time Systems
 - Properties
 - System description by difference equations
 - The z-transformation
 - System function
 - Discrete-time representation of continuous systems
 - Frequency selective filters

Module grade calculation
The module grade is the grade of the written exam.

Workload
Total approx. 240h, of which

- Attendance time in lectures and exercises: 75h
- Preparation/follow-up of the lectures and exercises: 130h
- 3. Exam preparation and presence in the same: 40h
- Preparation time for the workshop: 5h
- Presence time in the workshop: 15h
- Preparation of the protocol for the workshop: 5h

Total: 270 LP = 9 LP
Recommendation
Knowledge of HM3 is helpful.
Module: Sociology/Empirical Social Research [M-GEISTSOZ-101167]

Responsible: Prof. Dr. Gerd Nollmann
Organisation: KIT Department of Humanities and Social Sciences
Part of: Compulsory Elective Modules (Law or Sociology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-109047</td>
<td>Analysis of Social Structures (WiWi)</td>
<td>3</td>
<td>Nollmann</td>
</tr>
<tr>
<td>T-GEISTSOZ-109048</td>
<td>Social Science A (WiWi)</td>
<td>3</td>
<td>Nollmann</td>
</tr>
<tr>
<td>T-GEISTSOZ-109049</td>
<td>Social Science B (WiWi)</td>
<td>3</td>
<td>Nollmann</td>
</tr>
</tbody>
</table>

Competence Goal

The student

- Gains theoretical and methodical knowledge of social processes and structures
- Is able to apply acquired knowledge practically
- Is able to present work results in a precise and clear way

Content

This module offers students the possibility to get to know research problems and to answer these theoretically as well as empirically. For example: Who does earn how much in his job and why? How do subcultures emerge? Why are boys' grades in school always worse than those of girls? Do divorces have negative influences on the development of children? How does mass consumption influence the individual? Is there a world society emerging? In addition, this module contains courses on sociological methods that are essential to answer such questions scientifically.

The lecture on social structure analysis gives an overview of large social structures such as the education system, labour market, institutions, demography, etc. for Germany and in international comparison. The content of the social research seminars is determined individually by the lecturers. Students are free to choose one seminar each for Social Research A/B.
7.70 Module: Statistics and Econometrics [M-WIWI-101599]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of:
- Economics (Specialisation Program Economics)
- Compulsory Elective Modules (Economics)
- Compulsory Elective Modules (Statistics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics</td>
<td>5 CR</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Supplementary Courses (Elective: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103063</td>
<td>Analysis of Multivariate Data</td>
<td>4,5 CR</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-112153</td>
<td>Microeconometrics</td>
<td>4,5 CR</td>
<td>Krüger</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4,5 CR</td>
<td>Heller</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The course "Economics III: Introduction in Econometrics" is compulsory and must be examined. In case the course „Economics III: Introduction in Econometrics“ has already been examined within the module „Applied Microeconomics“, the course „Economics III: Introduction in Econometrics“ is not compulsory.

Competence Goal
The student
- shows an advanced understanding of Econometric techniques and statistical model building.
- is able to develop Econometric models for applied problems based on available data.
- is able to apply techniques and models with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.

Content
The courses provide a solid Econometric and statistical foundation of techiques necessary to conduct valid regression, time series and multivariate analysis.

Workload
The total workload for this module is approximately 270 hours.
7.71 Module: Statistics and Econometrics II [M-WIWI-105414]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of:
- Economics (Specialisation Program Economics)
- Compulsory Elective Modules (Economics)
- Compulsory Elective Modules (Statistics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103063</td>
<td>Analysis of Multivariate Data</td>
<td>4,5 CR</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-112153</td>
<td>Microeconometrics</td>
<td>4,5 CR</td>
<td>Krüger</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4,5 CR</td>
<td>Heller</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams of the examination regulation of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The following module must have been started: Statistics and Econometrics [M-WIWI-101599].

Competence Goal
The student
- shows an advanced understanding of Econometric techniques and statistical model building,
- is able to develop advanced Econometric models for applied problems based on available data
- is able to apply techniques and models efficiently with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.

Content
The courses provide foundations of advanced Econometric and statistical techniques for regression, time series and multivariate analysis.

Workload
The total workload for this module is approximately 270 hours.
7.72 Module: Strategy and Organization [M-WIWI-101425]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration (Specialisation Program Business Administration)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Strategy and Organization (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102630</td>
<td>Managing Organizations</td>
<td>3.5 CR</td>
<td>Lindstädt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102871</td>
<td>Problem Solving, Communication and Leadership</td>
<td>2 CR</td>
<td>Lindstädt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-113090</td>
<td>Strategic Management</td>
<td>3.5 CR</td>
<td>Lindstädt</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Competence Goal

- The student can prepare strategic decisions along the ideal-typical strategy process and classify them strategically.
- He/she evaluates the strengths and weaknesses of existing organizational structures and regulations using systematic criteria and can review the management of organizational change.
- The student can effectively carry out decision-making by structuring problems and communicating solutions, taking into account the situation and the personalities involved.
- Through intensive exposure to a variety of practice-relevant case studies, students learn to apply and discuss theoretical course content to real-life situations.

Content

The module has a practical and action-oriented structure. Students become familiar with central frameworks of strategic management along the ideal-typical strategy process. An overview of fundamental models will be given, and an action-oriented integration performance will be achieved through the transfer of theory to practical issues. In addition, students learn concepts for the design of organizational structures, regulation of organizational processes as well as control of organizational changes. This enables a well-founded assessment of existing organizational structures and regulations. Furthermore, participants are enabled to recognize, structure, analyze and effectively communicate problems. In addition, central leadership concepts are taught that address the influence of the situation, the leadership personality and the characteristics of those being led.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Supply Chain Management [M-WIWI-101421]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: Compulsory Elective Modules (Business Administration oder Engineering Sciences) Compulsory Elective Modules (Business Administration)

Credits 9 Grading scale Grade to a tenth Recurrence Each term Duration 1 term Language German/English Level 3 Version 11

Mandatory
T-WIWI-107506 Platform Economy 4,5 CR Weinhardt

Supplementary Courses (Election: 1 item)
T-WIWI-102704 Facility Location and Strategic Supply Chain Management 4,5 CR Nickel
T-WIWI-102714 Tactical and Operational Supply Chain Management 4,5 CR Nickel

Competence Certificate
This module is only available in the elective field. In the specialization program Business Administration, the election is not permitted.

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The course T-WIWI-107506 "Platform Economy" has to be taken.

Competence Goal
The students
- are able to understand and evaluate the control of cross-company supply chains based on a strategic and operative view,
- are able to analyse the coordination problems within the supply chains,
- are able to identify and integrate adequate information system infrastructures to support the supply chains,
- are able to apply theoretical methods from the operations research and the information management,
- learn to elaborate solutions in a team

Content
The module "Supply Chain Management" gives an overview of the mutual dependencies of information systems and of supply chains spanning several enterprises. The specifics of supply chains and their information needs set new requirements for the operational information management. In the core lecture "Platform Economy" the focus is set on markets between two parties that act through an intermediary on an Internet platform. Topics discussed are network effects, peer-to-peer markets, blockchains and market design. The course is held in English and teaches parts of the syllabus with the support of a case study in which students analyze a platform.

The module is completed by an elective course addressing appropriate optimization methods for the Supply Chain Management and for modern logistic approaches.

Annotation
The planned lectures in the next terms can be found on the websites of the respective institutes IISM, IFL and IOR.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Competence Certificate
Alternative exam assessment. The basis for grading is the documents produced, the presentations during the course of the project, the artifact to be produced (e.g. algorithm, method, model, software, component) and the final presentation.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-WIWI-105447 - Team Project Management and Technology (BUS/ENG) must not have been started.

Competence Goal
After successful completion of the team project, the students can:

- select and apply the methods, techniques and tools required for problem solving
- systematically analyze a given problem in an interdisciplinary team and develop and evaluate an artifact-centered solution
- constructively solve challenges and conflicts that arise in teamwork.

Content
The team project "Management and Technology" aims to prepare students for working in heterogeneously composed teams. A team of 4-5 students will work on defined interdisciplinary questions at the interface of economics and MINT subjects. The result of the projects should typically not only be a presentation or a report, but an artifact, e.g. a method, an algorithm, a model, a software or a component.

The team projects already implement the concept of research-oriented teaching in the Bachelor’s degree and aim to build up problem-solving competence in the students.

Workload
The total of 270 working hours (9 credit points) per team member (4-5 members per team) are divided into the following tasks:

- communication:
 - Team meetings: 30 h (2h per week, 15 weeks),
 - Electronic exchange: 20 h,
 - Final presentation: 10
- Documentation and development:
 - Analysis and design: 70 h,
 - Development: 90 h,
 - Tests and quality assurance: 50 h
7.75 Module: Team Project Management and Technology (BUS/ENG) [M-WIWI-105447]

Organisation: KIT Department of Economics and Management

Part of: Compulsory Elective Modules (Business Administration or Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-110977 | Team Project Management and Technology (BUS/ENG) | 9 CR | Klarmann, Mädche |

Competence Certificate

Alternative exam assessment. The basis for grading is the documents produced, the presentations during the course of the project, the artifact to be produced (e.g. algorithm, method, model, software, component) and the final presentation.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-WIWI-105440 - Team Project Management and Technology must not have been started.

Competence Goal

After successful completion of the team project, the students can:

- select and apply the methods, techniques and tools required for problem solving
- systematically analyze a given problem in an interdisciplinary team and develop and evaluate an artifact-centered solution
- constructively solve challenges and conflicts that arise in teamwork.

Content

The team project "Management and Technology" is carried out by a business administration or engineering institute. It aims to prepare students for working in heterogeneously composed teams. A team of 4-5 students will work on defined interdisciplinary questions at the interface of economics and MINT subjects. The result of the projects should typically not only be a presentation or a report, but an artifact, e.g. a method, an algorithm, a model, a software or a component.

The team projects already implement the concept of research-oriented teaching in the Bachelor’s degree and aim to build up problem-solving competence in the students.

Workload

The total of 270 working hours (9 credit points) per team member (4-5 members per team) are divided into the following tasks:

- **communication:**
 - Team meetings: 30 h (2h per week, 15 weeks),
 - Electronic exchange: 20 h,
 - Final presentation: 10
- **Documentation and development:**
 - Analysis and design: 70 h,
 - Development: 90 h,
 - Tests and quality assurance: 50 h
7.76 Module: Technical Logistics [M-MACH-101279]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration or Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>4 CR</td>
<td>Mittwollen, Oellerich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-109920</td>
<td>Basics of Technical Logistics II</td>
<td>6 CR</td>
<td>Furmans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the requirement of credits of this module. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

T-MACH-109920 "Basics of Technical Logistics II" is based on T-MACH-109919 "Basics of Technical Logistics I". The contents are taught one after the other in one course in the winter semester. The individual exams are taken on one day at the end of the semester.

Prerequisites

none

Competence Goal

The student

- acquires well-founded knowledge on the main topics of technical logistics
- gets an overview of different applications of technical logistics in practice,
- acquires expertise and understanding about functionality of material handling systems.

Content

The module Technical Logistics provides in-depth basics on the main topics of technical logistics. The module focuses on technical characteristics of material handling technology. To gain a deeper understanding, the course is accompanied by exercises.

Workload

270 hours

Learning type

Lecture
7.77 Module: Topics in Finance I [M-WIWI-101465]

Responsible:
Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation:
KIT Department of Economics and Management

Part of:
Business Administration (Specialisation Program Business Administration)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4.5</td>
<td>CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4.5</td>
<td>CR</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4.5</td>
<td>CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-112694</td>
<td>FinTech</td>
<td>4.5</td>
<td>CR</td>
<td>Thimme</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3</td>
<td>CR</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4.5</td>
<td>CR</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3</td>
<td>CR</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
It is only possible to choose this module in combination with the module Essentials in Finance. The module is passed only after the final partial exam of Essentials in Finance is additionally passed.

In addition to that it is possible to choose the module Topics in Finance II.

Competence Goal
The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content
The module Topics in Finance I is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Annotation
The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
7.78 Module: Topics in Finance II [M-WIWI-101423]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
Business Administration (Specialisation Program Business Administration)
Compulsory Elective Modules (Business Administration oder Engineering Sciences)
Compulsory Elective Modules (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Election notes

This module will not count towards the degree until the module *Essentials in Finance* has also been successfully completed. The Essentials in Finance module may not be booked out as an additional examination.

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
<td>10</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
<td>10</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
<td>10</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4.5 CR</td>
<td>Luedecke</td>
<td>10</td>
</tr>
<tr>
<td>T-WIWI-112694</td>
<td>FinTech</td>
<td>4.5 CR</td>
<td>Thimme</td>
<td>10</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3 CR</td>
<td>Müller</td>
<td>10</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4.5 CR</td>
<td>Gutekunst, Wigger</td>
<td>10</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
<td>10</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

It is only possible to choose this module in combination with the module *Essentials in Finance*. The module is passed only after the final partial exam of *Essentials in Finance* is additionally passed.

In addition to that it is possible to choose the module *Topics in Finance I*.

Competence Goal

The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content

The module *Topics in Finance II* is based on the module *Essentials of Finance*. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Annotation

The course T-WIWI-102790 "Special Taxation" will no longer be offered in the module as of winter semester 2018/1019.

Workload

The total workload for this module is approximately 270 hours.
7.79 Module: Vehicle Development [M-MACH-101265]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of:
- Engineering Sciences (Specialisation Program Engineering Sciences)
- Compulsory Elective Modules (Business Administration oder Engineering Sciences)
- Compulsory Elective Modules (Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Vehicle Development (Elect: at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>CR</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>3 CR</td>
<td>Leister</td>
</tr>
<tr>
<td>T-MACH-111389</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
<td>3 CR</td>
<td>Weber</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>1.5 CR</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>1.5 CR</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>4.5 CR</td>
<td>Frey, Gauterin, Gießler</td>
</tr>
<tr>
<td>T-MACH-110796</td>
<td>Python Algorithm for Vehicle Technology</td>
<td>4 CR</td>
<td>Rhode</td>
</tr>
<tr>
<td>T-MACH-105172</td>
<td>Simulation of Coupled Systems</td>
<td>4 CR</td>
<td>Geimer</td>
</tr>
<tr>
<td>T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>0 CR</td>
<td>Geimer, Xiang</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Gear Cutting Technology</td>
<td>4 CR</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-112126</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
<td>4 CR</td>
<td>Scheubner</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams.
The partial exams consists of a written exam (90 to 120 minutes) or an oral exam (duration 30 to 40 minutes).

Prerequisites
None

Competence Goal
The student
- knows and understands the procedures in automobile development,
- knows and understands the technical specifications at the development procedures,
- is aware of notable boundaries like legislation.

Content
By taking the module Vehicle Development the students get to know the methods and processes applied in the automobile industry. They learn the technical particularities which have to be considered during the vehicle development and it is shown how the numerous single components cooperate in a harmoniously balanced complete vehicle. There is also paid attention on special boundary conditions like legal requirements.

Workload
The total work load for this module is about 270 Hours (9 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 6 credit points is about 180 hours, for courses with 4.5 credit points about 135 hours, for courses with 3 credit points about 90 hours, and for courses with 1.5 credit points about 45 hours. The total number of hours per course results from the time of visiting the lectures and exercises, as well as from the exam duration and the time that is required to achieve the objectives of the module as an average student with an average performance.

Recommendation

Learning type
The teaching and learning procedures (lecture, lab course, workshop) are described for each course of the module separately.

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
8 Courses

8.1 Course: Advanced Lab Blockchain Hackathon (Bachelor) [T-WIWI-111127]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101426 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2512402</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td>Practical course / Online</td>
<td>Sunyaev, Kannengießer, Sturm, Beyene</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900086</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td>Online</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900096</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td>Online</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Below you will find excerpts from events related to this course:
Content

Practical Course (Informatik): Blockchain Hackathon

Bachelor/Master

The practical course "Blockchain Hackathon" aims to teach students the basics of developing socio-technical information systems in the context of blockchain or distributed ledger technology (DLT) in a practical way. For this purpose, students will be introduced to DLT and the development of DLT applications in a kick-off event. Subsequently, students should implement a software artifact (e.g., desktop application, mobile app, or web application) in group work that solves a given problem. Further focuses of the practice course are quality assurance (e.g., by implementing tests) and documentation of the implemented software artifacts.

Educational objectives

- Understanding of the basics of DLT and DLT application development
- Independent and self-organized realization of a software development project
- Use of current development methods
- Selection and evaluation of development tools and methods
- Planning and execution of design, implementation and quality assurance of software artifacts
- Preparation of documentation for a software project
- Preparing and presenting project results in an understandable and structured way

Registration for

Practical Course ("Praktikum")

Registration period

Mo. 10/09/2023 00:00 – Fr. 11/17/2023 23:59

Registration procedure

Manual allocation

The lecturer manually issues acceptances and rejections and assigns topics if necessary.

Restrictions

There are no restrictions on registration.

Topics

Topic assignment will take place after the launch event.

Program

Format: Practical Course

Important: The practical course takes place during the semester break. Please keep the following provisional dates free if you want to participate in the internship

- **We., 11/22/2023**
 - 09:00 – 10:30: Lecture: The Ethereum Blockchain
 - 10:30 – 11:00: Break
 - 11:00 – 12:30: Lecture: Smart Contract Development
 - 12:30 – 13:00: Break
 - 13:00 – 14:30: Lecture: Presentation of the Topics
 - 14:30 – 15:00: Break
 - 15:00 – 17:00: Lecture: Frontend Integration
- **Th., 11/23/2023**
 - 09:00 – 09:30: Assignment of the topics
 - 09:30 – 11:00: Set-Up example Docker project
 - 11:00 – 11:30: Q&A
 - From 11:30: Independent treatment of the topics in groups
- **Fr., 11/24/2023 until Mo., 02/12/2024**
 - Independent work on the topics in groups
- **Mo., 01/15/2024**
 - 13:30 – 14:30: Interim presentation of developed DLT applications (duration depends on the number of groups)
 - From 14:30: Final discussion and conclusion
- **Mo., 02/05/2024**
 - 10:00 – 11:00: Final presentation of the developed software artifacts (duration depends on the number of groups)
 - Submission of the documentation of the software artifact: Probably on 02/28/2024 (the final date will be announced at the event).

These appointments may still be postponed. Further information on the procedure will be announced on the first appointment. Depending on the number of participants, the individual sessions may have a shorter duration.

Control of Success
The control of success takes place in the form of an examination of a different kind. The following aspects are included in the evaluation:

- The software artifact in terms of functionality, and code quality. Meaningful tests must have been developed to show the functionality.
- A presentation to introduce the software artifact
- The written documentation

The lecturer determines the points scheme for the evaluation. It will be announced at the beginning of the course. The problem to be solved can be worked on together in a group of a maximum of four students. The individual partial performances must be marked.

The documentation (and the presentation) can be done in English or German.

This practical course will be credited as a „Praktikum Informatik“.

Recommendations for the Preparation for the cii Blockchain Hackathon

To successfully participate in the cii Blockchain Hackathon, we recommend the following:

- You should have a basic understanding about programming and blockchain technology. You should use a computing device with more than 4 GB RAM and at least 3 GB free storage.
- You should have basic knowledge about React or ReactJS.
- You should be able to use Git and Node Package Manager (NPM).

To practice smart contract programming and prepare yourselves for the hackathon, we offer the following example projects:

- Smart Contract Patterns: https://github.com/KITcii/smart-contract-dev-support
- Example Project in Docker: https://git.scc.kit.edu/tf2000/drizzle-with-events

If you have any questions regarding these applications, please contact niclas.kannengiesser@kit.edu
8.2 Course: Advanced Lab Informatics (Bachelor) [T-WIWI-110541]

Responsible: Professorenschaft des Instituts AIFB
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101426 - Electives in Informatics

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course Title</th>
<th>Hours</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2512204</td>
<td>Lab Realisation of innovative services (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🕵️</td>
<td>Oberweis, Toussaint, Schiefer, Schüler</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2512400</td>
<td>Practical Course Sociotechnical Information Systems Development (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🎨</td>
<td>Sunyaev, Goram, Leiser</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2512402</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td></td>
<td>Practical course / 🖥</td>
<td>Sunyaev, Kannengießer, Sturm, Beyene</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2512554</td>
<td>Praktikum Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🕵️</td>
<td>Volkamer, Strufe, Berens, Länge, Mossano, Hennig, Hilt, Veit</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2512555</td>
<td>Praktikum Security, Usability and Society (Master)</td>
<td>3 SWS</td>
<td>Practical course / 🕵️</td>
<td>Volkamer, Strufe, Berens, Länge, Mossano, Hennig, Hilt, Veit</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2512204</td>
<td>Lab Realisation of innovative services (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🎨</td>
<td>Schiefer, Schüler, Toussaint</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2512400</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🕵️</td>
<td>Sunyaev, Leiser</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2512402</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td></td>
<td>Practical course / 🖥</td>
<td>Sunyaev, Sturm, Kannengießer, Beyene</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2512554</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🕵️</td>
<td>Volkamer, Strufe, Mayer, Berens, Mossano, Hennig, Veit, Länge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900047</td>
<td>Advanced Lab Realization of Innovative Services (Bachelor)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900080</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900086</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900116</td>
<td>Advanced Lab Security, Usability and Society (Bachelor)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900304</td>
<td>Seminar Linked Data and the Semantic Web (Master)</td>
<td>Käfer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900016</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900029</td>
<td>Practical Lab Security, Usability and Society (Bachelor)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900085</td>
<td>Advanced Lab Realization of innovative services (Bachelor)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900096</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>
Competence Certificate
The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites
None

Annotation
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Department</th>
<th>Lab Realisation of innovative services (Bachelor)</th>
<th>Practical course (P)</th>
<th>Blended (On-Site/Online)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2512204, WS 23/24, 3 SWS, Language: German, Open in study portal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content
As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students).

Further information can be found on the ILIAS page of the lab.

Organizational issues
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

<table>
<thead>
<tr>
<th>Department</th>
<th>Advanced Lab Blockchain Hackathon (Bachelor)</th>
<th>Practical course (P)</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2512402, WS 23/24, SWS, Language: German/English, Open in study portal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

Practical Course (Informatik): Blockchain Hackathon

Bachelor/Master

The practical course "Blockchain Hackathon" aims to teach students the basics of developing socio-technical information systems in the context of blockchain or distributed ledger technology (DLT) in a practical way. For this purpose, students will be introduced to DLT and the development of DLT applications in a kick-off event. Subsequently, students should implement a software artifact (e.g., desktop application, mobile app, or web application) in group work that solves a given problem. Further focuses of the practice course are quality assurance (e.g., by implementing tests) and documentation of the implemented software artifacts.

Educational objectives

- Understanding of the basics of DLT and DLT application development
- Independent and self-organized realization of a software development project
- Use of current development methods
- Selection and evaluation of development tools and methods
- Planning and execution of design, implementation and quality assurance of software artifacts
- Preparation of documentation for a software project
- Preparing and presenting project results in an understandable and structured way

Registration for

Practical Course ("Praktikum")

Registration period

Mo. 10/09/2023 00:00 – Fr. 11/17/2023 23:59

Registration procedure

Manual allocation

The lecturer manually issues acceptances and rejections and assigns topics if necessary.

Restrictions

There are no restrictions on registration.

Topics

Topic assignment will take place after the launch event.

Program

Format: Practical Course

Important: The practical course takes place during the semester break. Please keep the following provisional dates free if you want to participate in the internship

- We., 11/22/2023
 - 09:00 – 10:30: Lecture: The Ethereum Blockchain
 - 10:30 – 11:00: Break
 - 11:00 – 12:30: Lecture: Smart Contract Development
 - 12:30 – 13:00: Break
 - 13:00 – 14:30: Lecture: Presentation of the Topics
 - 14:30 – 15:00: Break
 - 15:00 – 17:00: Lecture: Frontent Integration
- Th., 11/23/2023
 - 09:00 – 09:30: Assignment of the topics
 - 09:30 – 11:00: Set-Up example Docker project
 - 11:00 – 11:30: Q&A
 - From 11:30: Independent treatment of the topics in groups
- Fr., 11/24/2023 until Mo., 02/12/2024
 - Independent work on the topics in groups
- Mo., 01/15/2024
 - 13:30 – 14:30: Interim presentation of developed DLT applications (duration depends on the number of groups)
 - From 14:30: Final discussion and conclusion
- Mo., 02/05/2024
 - 10:00–11:00: Final presentation of the developed software artifacts (duration depends on the number of groups)
 - Submission of the documentation of the software artifact: Probably on 02/28/2024 (the final date will be announced at the event).

These appointments may still be postponed. Further information on the procedure will be announced on the first appointment. Depending on the number of participants, the individual sessions may have a shorter duration.

Control of Success
The control of success takes place in the form of an examination of a different kind. The following aspects are included in the evaluation:

- The software artifact in terms of functionality, and code quality. Meaningful tests must have been developed to show the functionality.
- A presentation to introduce the software artifact
- The written documentation

The lecturer determines the points scheme for the evaluation. It will be announced at the beginning of the course. The problem to be solved can be worked on together in a group of a maximum of four students. The individual partial performances must be marked.

The documentation (and the presentation) can be done in English or German.

This practical course will be credited as a „Praktikum Informatik“.

Recommendations for the Preparation for the cii Blockchain Hackathon

To successfully participate in the cii Blockchain Hackathon, we recommend the following:

- You should have a basic understanding about programming and blockchain technology. You should use a computing device with more than 4 GB RAM and at least 3 GB free storage.
- You should have basic knowledge about React or ReactJS.
- You should be able to use Git and Node Package Manager (NPM).

To practice smart contract programming and prepare yourselves for the hackathon, we offer the following example projects:

- Smart Contract Patterns: https://github.com/KITcii/smart-contract-dev-support
- Example Project in Docker: https://git.scc.kit.edu/tf2000/drizzle-with-events

If you have any questions regarding these applications, please contact niclas.kannengiesser@kit.edu

Praktikum Security, Usability and Society (Bachelor)

2512554, WS 23/24, 3 SWS, Language: German/English, Open in study portal

Practical course (P)

Online
Content
The Praktikum Security, Usability and Society will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to mattia.mossano@kit.edu. Topics are assigned first-come-first-served until all of them are filled. Topics in italics have already been assigned.

There are two rounds to apply:

Important dates:
Kick-off: 05.10.2023, 09:00 AM CET in Big Blue Button - Link
Report & code feedback deadline: 01.03.2024, 23:59 CET
Feedback on Report & code: 08.03.2024, 23:59 CET
Final report + code deadline: 15.03.2024, 23:59 CET
Presentation draft deadline: 15.03.2024, 23:59 CET
Feedback on presentation draft: 19.03.2024, 23:59 CET
Final presentation deadline: 22.03.2024, 23:59 CET
Presentation day: 29.03.2024, 09:00 CET

Topics:
Privacy Friendly apps
In this subject, students complete an app (or an extension of an app) among our Privacy-Friendly Apps. Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php. Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
Title: Notes 2.0
Number of students: 1 Bachelor
Description: Update und Vorbereitung zur Veröffentlichung der Notes 2.0-App.

Designing Security User studies
These topics are related to how to set up and conduct user studies of various types. Online studies, interviews and lab studies are possible. At the end of the semester, the students present a report / paper and a talk in which they present their methodologies and the results of small pre-studies.
Title: Designing User Studies for Evaluating Biometric Authentication Systems
Number of students: 1 Bachelor or Master level
Description: The proposed topic focuses on designing and implementing a user study methodology to evaluate the usability and user perception of biometric authentication systems. Biometric authentication involves using unique physiological or behavioral characteristics, such as fingerprints, facial recognition, or voice patterns, to verify a user's identity. The goal of this research is to understand the factors that affect the effectiveness and acceptance of biometric authentication and provide insights for designing user-friendly and secure biometric authentication systems.
Title: How useful are security advice given by ChatGPT?
Number of students: 1-2 Bachelor level
Description: ChatGPT is nowadays used for multiple reasons. One of them is to obtain advice on security decision, asking the program how to be best defend oneself. However, what are these advice based on? And more importantly, is the quality of the advice in line with the best practices or are they misleading? The goal of this topic is to design an expert study where various advice given by ChatGPT on security topics (e.g., password policies, phishing, etc.) are compared against the advice of experts. The results then need to be analysed and classified to determine the quality of ChatGPT advice.

Run Usable Security Studies and Results Analysis
These topics are related to run and analyse the results of user-studies. Online studies, interviews and lab studies are all possible, depending on the topic. At the end of the semester, the students present a report / paper with the analyses conducted and a talk in which they present the results.
Title: Phishing through homographic attacks in messengers and social networks
Number of students: 1-2 Bachelor or Master level
Description: The task will be to test three types of attacks in messengers and social networks that work in some email clients. First is the link mismatch attack, where the link text differs from the actual link target. Second is an attack in which the actual link target is disguised by URL encoding [https://en.wikipedia.org/wiki/URL_encoding], and finally homographic attacks which uses Internationalized Domain Names [https://en.wikipedia.org/wiki/IDN_homograph_attack], in which Latin characters are replaced by characters of a different alphabet in the domain name. The attacks are predefined, so no knowledge of phishing techniques is required.
Title: Usability Study of Mobile Authentication for Elderly Users with Rheumatoid Arthritis (English only)
Number of students: 1 Bachelor or Master level
Description: Authentication is an ever important topic, especially in the mobile context. However, it becomes even more relevant when considering accessibility to it. Nowadays, a common authentication method is using a PIN. Yet, given the low hand mobility of users affected by rheumatoid arthritis, sometimes using PINs can be difficult. In this topic, the student will conduct several sessions of an already designed lab study with various participants using arthritis simulation gloves to evaluate three PIN-pad interfaces aimed at making authentication more accessible. The study will also investigate the preferences of users regarding PIN-pad interfaces through drawings and proposals of changes. The student will then analyse the results through inferential statistics. Depending on the quality of the outcome, the results will then be published in a paper and the student will be added to the authors list.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website (https://secuso.aifb.kit.edu/Studium_und_Lehre.php).

Practical course (P)
Praktikum Security, Usability and Society (Master)
2512555, WS 23/24, 3 SWS, Language: German/English, Open in study portal
Online
Content
The Praktikum Security, Usability and Society will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to mattia.mossano@kit.edu. Topics are assigned first-come-first-served until all of them are filled. Topics in italics have been already assigned.

There are two deadlines:
Summer round closes on 16.07.2023. Assignment will be done by 17.07.2023 and confirmation must be received by 21.07.2023.
Autumn round opens 11.09.2023 and closes on 08.10.2023. Assignment will be done by 09.10.2023 and confirmation must be received by 13.10.2023.

Important dates:
Kick-off: 05.10.2023, 09:00 AM CET in Big Blue Button - Link

Report & code feedback deadline: 01.03.2024, 23:59 CET
Feedback on Report & code: 08.03.2024, 23:59 CET
Final report + code deadline: 15.03.2024, 23:59 CET
Presentation draft deadline: 15.03.2024, 23:59 CET
Feedback on presentation draft: 19.03.2024, 23:59 CET
Final presentation deadline: 22.03.2024, 23:59 CET
Presentation day: 29.03.2024, 09:00 CET

Topics:

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

Title: Making e-mails more visible by embedding moving images
Number of students: 1 Master
Description: In case of a security incident, it is necessary to inform the affected persons about their vulnerabilities as soon as possible. Within the context of the INSPECTION project, we are currently informing website owners via e-mail about security related vulnerabilities on their websites. Although e-mails have been shown to be the most cost-efficient means to deliver such information, they have not lead to an appropriate remediation rate. While speaking to the affected website owners we learned that they would appreciate more information, although not being delivered as more text in the e-mail. Also, we learned that most e-mails were not read because they were considered spam. Thus, we need to find a way to make e-mail notifications more effective in raising peoples’ awareness. Videos have been proven effective to raise awareness in the context of IT security. The goal of the project will be, to explore ways to embed videos in an e-mail via HTML (either as gifs or as preview to a YouTube video). The challenge is to make this e-mail readable for different clients and webmail as well as getting it delivered through spam filters.

Designing Security User studies
These topics are related to how to set up and conduct user studies of various types. Online studies, interviews and lab studies are possible. At the end of the semester, the students present a report / paper and a talk in which they present their methodologies and the results of small pre-studies.

Title: Designing User Studies for Evaluating Biometric Authentication Systems
Number of students: 1 Bachelor or Master level
Description: The proposed topic focuses on designing and implementing a user study methodology to evaluate the usability and user perception of biometric authentication systems. Biometric authentication involves using unique physiological or behavioral characteristics, such as fingerprints, facial recognition, or voice patterns, to verify a user’s identity. The goal of this research is to understand the factors that affect the effectiveness and acceptance of biometric authentication and provide insights for designing user-friendly and secure biometric authentication systems.

Title: Can anxiety influences security advice
Number of students: 1 Master level
Description: Nowadays ChatGPT is used for a multitude of reasons. One is to ask advice on security topics. However, previous research showed that oftentimes ChatGPT creates answers based on previous interactions with it. Therefore, is it possible that also security advice change according to the previous interaction? And if this is the case, can more anxious props lead to completely different results? The student will have to read the previous literature on ChatGPT, find expert advice on security topics and create an experiment to determine if anxiety influenced the advice given by ChatGPT.
Title: Investigating ChatGPT privacy tradeoffs and users perception of them (English only)
Number of students: 1 Master level
Description: As ChatGPT grows in popularity, it becomes increasingly vital to examine the privacy trade-offs associated with its usage. The user's willingness to accept these trade-offs is instrumental in understanding the wider implications of employing AI language models. This topic involves a two-part exploration into the privacy trade-offs of using ChatGPT. Initially, the student will analyse ChatGPT's Terms and Conditions and conduct a short literature review to identify potential privacy trade-offs. The found trade-offs need to be categorised into a set of trade-offs that will be investigated. Subsequently, the student will design an online user study, incorporating various question types and a deception study, to gauge the willingness of ChatGPT users to accept these trade-offs. Finally, the student will test the designed online user study in the course of small pre-test.

Run Usable Security Studies and Results Analysis
These topics are related to run and analyse the results of user-studies. Online studies, interviews and lab studies are all possible, depending on the topic. At the end of the semester, the students present a report / paper with the analyses conducted and a talk in which they present the results.

Title: Phishing through homographic attacks in messengers and social networks
Number of students: 1-2 Bachelor or Master level
Description: The task will be to test three types of attacks in messengers and social networks that work in some email clients. First is the link mismatch attack, where the link text differs from the actual link target. Second is an attack in which the actual link target is disguised by URL encoding [https://en.wikipedia.org/wiki/URL_encoding], and finally homographic attacks which uses Internationalized Domain Names [https://en.wikipedia.org/wiki/IDN_homograph_attack], in which Latin characters are replaced by characters of a different alphabet in the domain name. The attacks are predefined, so no knowledge of phishing techniques is required.

Title: Usability Study of Mobile Authentication for Elderly Users with Rheumatoid Arthritis (English only)
Number of students: 1 Bachelor or Master level
Description: Authentication is an ever important topic, especially in the mobile context. However, it becomes even more relevant when considering accessibility to it. Nowadays, a common authentication method is using a PIN. Yet, given the low hand mobility of users affected by rheumatoid arthritis, sometimes using PINs can be difficult. In this topic, the student will conduct several sessions of an already designed lab study with various participants using arthritis simulation gloves to evaluate three PIN-pad interfaces aimed at making authentication more accessible. The study will also investigate the preferences of users regarding PIN-pad interfaces through drawings and proposals of changes. The student will then analyse the results through inferential statistics. Depending on the quality of the outcome, the results will then be published in a paper and the student will be added to the authors list.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website (https://secuso.aifb.kit.edu/Studium_und_Lehre.php).

Lab Realisation of innovative services (Bachelor)
2512204, SS 2024, 3 SWS, Language: German, Open in study portal

Content
As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students). Further information can be found on the ILIAS page of the lab.

Organizational issues
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Advanced Lab Development of Sociotechnical Information Systems (Bachelor)
2512400, SS 2024, 3 SWS, Language: German/English, Open in study portal

Content
The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (e.g., web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact.

Registration information will be announced on the course page.

Practical lab Security, Usability and Society (Bachelor)
2512554, SS 2024, 3 SWS, Language: German/English, Open in study portal

Practical course (P)
On-Site

Practical course (P)
Blended (On-Site/Online)

Practical course (P)
Online
Content
The Praktikum Security, Usability and Society will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to mattia.mossano@kit.edu. Topics are assigned first-come-first-served until all of them are filled. Topics in italics have already been assigned.

Application deadline: 12.04.2024
Assignment: 15.04.2024
Confirmation deadline: 19.04.2024

Important dates:
Kick-off: 17.04.2024, 09:00 AM CET in Big Blue Button - Link
Report & code feedback deadline: 26.07.2024, 23:59 CET
Feedback on Report & code: 16.08.2024, 23:59 CET
Final report & code deadline: 01.09.2024, 23:59 CET
Presentation draft deadline: 06.09.2024, 23:59 CET
Feedback on presentation draft: 13.09.2024, 23:59 CET
Final presentation deadline: 17.09.2024, 23:59 CET
Presentation day: 18.09.2024, 09:00 CET

Topics:

Privacy Friendly Apps
In this area, students complete an app (or an extension of an app) among our Privacy-Friendly Apps. Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php. Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
Title: NoPhish App
Number of students: 2 Ba/Ma
Description: The NoPhish app was one of the first measures from the NoPhish concept. The app has been around for a long time and has not been updated since then. Accordingly, the task of the project is to make the app functional for the current Android version. The app is also to be optimised so that updates, e.g. new chapters, can be added easily.

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, e.g. as an extension like TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
Title: Hacking TORPEDO
Number of students: 1-2 Ba/Ma
Description: TORPEDO has existed for many years both as a Thunderbird add-on and as a web extension. TORPEDO is intended to help address various forms of phishing attacks and thereby protect the user, e.g. against various manipulations of the domain or additional tooltips. However, no targeted attacks on TORPEDO have yet been found. The aim of the work is to subject TORPEDO to a stress test and also to develop attacks that specifically target the implementation of TORPEDO.

Run Usable Security Studies and Results Analysis
These are related to run and analyse the results of user-studies. Online studies, interviews and lab studies are all possible, depending on the topic. At the end of the semester, the students present a report / paper with the analyses conducted and a talk in which they present the results.
Title: Visualization of Eye Gaze Patterns during Authetication Tasks
Number of students: 1 Ba/Ma
Description: In this project, students will analyze and visualize eye gaze data collected during two specific authentication tasks: the Dot Task and the Slider Task. The primary objective is to represent subjects’ eye movements visually, enhancing the understanding of gaze patterns during the authentication process. "Dot Task Visualization:“ For the Dot Task, participants were instructed to focus on a sequence of dots displayed on a screen. The dataset includes the positions of these dots and the corresponding gaze locations of the subjects. The student's task is to create a dynamic visualization that not only represents these positions accurately but also illustrates the sequence in which the dots were focused on by the subjects. "Slider Task Visualization:“ The Slider Task involved presenting participants with a series of images, for which both the images’ locations on the screen and the subjects’ gaze locations are recorded. The challenge is to develop a heatmap visualization based on this data, effectively demonstrating the concentration and dispersion of gaze points across different images.
Title: Compare BSI Phishing Game with the NoPhish Game
Number of students: 1 Ba
Description: The NoPhish app, one of the first implementations of the NoPhish concept, is a form of serious game. The BSI has also developed a game in the field of phishing. Both "games" use different approaches to impart knowledge from the same context. The aim is to evaluate the two games in terms of similarities and differences.

Title: Phishing Advice from Organizations (English Only)
Number of students: 1 Ba
Description: Many companies distribute information on how to recognise phishing via various channels such as e-mails, e.g. Amazon or Telekom. The question arises as to how helpful these tips are in reality. Are they too specific to the context of the company or so abstractly formulated that they are of no real help to users? The aim of the work is to collect various hints and then compare them with the hints of the NoPhish concept in order to find differences and similarities between the hints and the concept.

Title: Chatbots for Literature Reviews
Number of students: 1 Ba
Description: Chatbots are becoming increasingly popular and are already being used in various areas. But in what form can these bots be used for science? The variety of chatbots also raises the question of whether there are chatbots that are better suited to a scientific context. The aim is to identify a selection of chatbots and evaluate them in terms of their effectiveness for future literature research. To this end, the results of the chatbots will be compared with the ACM database in order to check their effectiveness for finding literature for a specific period of time.

Title: Phishing through homographic attacks in messengers and social networks
Number of students: 1-2 Ba/Ma
Description: The task will be to test three types of attacks in messengers and social networks that work in some email clients. First is the link mismatch attack, where the link text differs from the actual link target. Second is an attack in which the actual link target is disguised by URL encoding [https://en.wikipedia.org/wiki/URL_encoding], and finally homographic attacks which uses Internationalized Domain Names [https://en.wikipedia.org/wiki/IDN_homograph_attack], in which Latin characters are replaced by characters of a different alphabet in the domain name. The attacks are predefined, so no knowledge of phishing techniques is required.

Title: Usability Study of Mobile Authentication for Elderly Users with Rheumatoid Arthritis (English only)
Number of students: 1 Ba/Ma
Description: Authentication is an ever important topic, especially in the mobile context. However, it becomes even more relevant when considering accessibility to it. Nowadays, a common authentication method is using a PIN. Yet, given the low hand mobility of users affected by rheumatoid arthritis, sometimes using PINs can be difficult. In this topic, the student will conduct several sessions of an already designed lab study with various participants using arthritis simulation gloves to evaluate three PIN-pad interfaces aimed at making authentication more accessible. The study will also investigate the preferences of users regarding PIN-pad interfaces through drawings and proposals of changes. The student will then analyse the results through inferential statistics. Depending on the quality of the outcome, the results will then be published in a paper and the student will be added to the authors list.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website [https://secuso.aifb.kit.edu/Studium_und_Lehre.php].
8.3 Course: Advanced Lab Realization of Innovative Services (Bachelor) [T-WIWI-112915]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101426 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2512204</td>
<td>Lab Realisation of innovative services (Bachelor)</td>
<td>3</td>
<td>Practical course / 🧩</td>
<td>Oberweis, Toussaint, Schiefer, Schüler</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2512204</td>
<td>Lab Realisation of innovative services (Bachelor)</td>
<td>3</td>
<td>Practical course / 🗣</td>
<td>Schiefer, Schüler, Toussaint</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Name</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900047</td>
<td>Advanced Lab Realization of Innovative Services (Bachelor)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900085</td>
<td>Advanced Lab Realization of innovative services (Bachelor)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Annotation

As part of the lab, the participants should work together in small groups to produce innovative services (mainly for students).

Further information can be found on the ILIAS page of the lab.

Below you will find excerpts from events related to this course:

Lab Realisation of innovative services (Bachelor)

<table>
<thead>
<tr>
<th>Code</th>
<th>Term</th>
<th>Name</th>
<th>SWS</th>
<th>Language</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2512204</td>
<td>WS 23/24</td>
<td>Lab Realisation of innovative services (Bachelor)</td>
<td>3</td>
<td>German</td>
<td>Practical course (P)</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Content

As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students).

Further information can be found on the ILIAS page of the lab.

Organizational issues

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Lab Realisation of innovative services (Bachelor)

<table>
<thead>
<tr>
<th>Code</th>
<th>Term</th>
<th>Name</th>
<th>SWS</th>
<th>Language</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2512204</td>
<td>SS 2024</td>
<td>Lab Realisation of innovative services (Bachelor)</td>
<td>3</td>
<td>German</td>
<td>On-Site</td>
<td></td>
</tr>
</tbody>
</table>

Content

As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students).

Further information can be found on the ILIAS page of the lab.

Organizational issues

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
8 COURSES

8.4 Course: Advanced Lab Security, Usability and Society [T-WIWI-108439]

Responsible: Prof. Dr. Melanie Volkamer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101426 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2512554</td>
<td>Praktikum Security, Usability and Society (Bachelor)</td>
<td>3</td>
<td>Practical course / 🖥</td>
<td>Volkamer, Strufe, Berens, Länge, Mossano, Hennig, Hilt, Veit</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2512555</td>
<td>Praktikum Security, Usability and Society (Master)</td>
<td>3</td>
<td>Practical course / 🖥</td>
<td>Volkamer, Strufe, Berens, Länge, Mossano, Hennig, Hilt, Veit</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2512554</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>3</td>
<td>Practical course / 🖥</td>
<td>Volkamer, Strufe, Mayer, Berens, Mossano, Hennig, Veit, Länge</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900116</td>
<td>Advanced Lab Security, Usability and Society (Bachelor)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900307</td>
<td>Advanced Lab Security, Usability and Society (Master)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900029</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Recommendation

Knowledge from the lecture "Information Security" is recommended.

Annotation

The course will not be offered in the summer semester 2023.

Below you will find excerpts from events related to this course:
Content
The Praktikum Security, Usability and Society will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please register on the WiWi portal and send an email with your chosen topic, plus a backup one, to mattia.mossano@kit.edu. Topics are assigned first-come-first-served until all of them are filled. Topics in italics have already been assigned.

There are two rounds to apply:

Important dates:
Kick-off: 05.10.2023, 09:00 AM CET in Big Blue Button - Link
Report & code feedback deadline: 01.03.2024, 23:59 CET
Feedback on Report & code: 08.03.2024, 23:59 CET
Final report + code deadline: 15.03.2024, 23:59 CET
Presentation draft deadline: 15.03.2024, 23:59 CET
Feedback on presentation draft: 19.03.2024, 23:59 CET
Final presentation deadline: 22.03.2024, 23:59 CET
Presentation day: 29.03.2024, 09:00 CET

Topics:
Privacy Friendly apps
In this subject, students complete an app (or an extension of an app) among our Privacy-Friendly Apps. Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php . Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
Title: Notes 2.0
Number of students: 1 Bachelor
Description: Update und Vorbereitung zur Veröffentlichung der Notes 2.0-App.

Designing Security User studies
These topics are related to how to set up and conduct user studies of various types. Online studies, interviews and lab studies are possible. At the end of the semester, the students present a report / paper and a talk in which they present their methodologies and the results of small pre-studies.
Title: Designing User Studies for Evaluating Biometric Authentication Systems
Number of students: 1 Bachelor or Master level
Description: The proposed topic focuses on designing and implementing a user study methodology to evaluate the usability and user perception of biometric authentication systems. Biometric authentication involves using unique physiological or behavioral characteristics, such as fingerprints, facial recognition, or voice patterns, to verify a user's identity. The goal of this research is to understand the factors that affect the effectiveness and acceptance of biometric authentication and provide insights for designing user-friendly and secure biometric authentication systems.
Title: How useful are security advice given by ChatGPT?
Number of students: 1-2 Bachelor level
Description: ChatGPT is nowadays used for multiple reasons. One of them is to obtain advice on security decision, asking the program how to be best defend oneself. However, what are these advice based on? And more importantly, is the quality of the advice in line with the best practices or are they misleading? The goal of this topic is to design an expert study where various advice given by ChatGPT on security topics (e.g., password policies, phishing, etc.) are compared against the advice of experts. The results then need to be analysed and classified to determine the quality of ChatGPT advice.

Run Usable Security Studies and Results Analysis
These topics are related to run and analyse the results of user-studies. Online studies, interviews and lab studies are all possible, depending on the topic. At the end of the semester, the students present a report / paper with the analyses conducted and a talk in which they present the results.
Title: Phishing through homographic attacks in messengers and social networks
Number of students: 1-2 Bachelor or Master level
Description: The task will be to test three types of attacks in messengers and social networks that work in some email clients. First is the link mismatch attack, where the link text differs from the actual link target. Second is an attack in which the actual link target is disguised by URL encoding [https://en.wikipedia.org/wiki/URL_encoding], and finally homographic attacks which uses Internationalized Domain Names [https://en.wikipedia.org/wiki/IDN_homograph_attack], in which Latin characters are replaced by characters of a different alphabet in the domain name. The attacks are predefined, so no knowledge of phishing techniques is required.
Title: Usability Study of Mobile Authentication for Elderly Users with Rheumatoid Arthritis (English only)
Number of students: 1 Bachelor or Master level

Description: Authentication is an ever important topic, especially in the mobile context. However, it becomes even more relevant when considering accessibility to it. Nowadays, a common authentication method is using a PIN. Yet, given the low hand mobility of users affected by rheumatoid arthritis, sometimes using PINs can be difficult. In this topic, the student will conduct several sessions of an already designed lab study with various participants using arthritis simulation gloves to evaluate three PIN-pad interfaces aimed at making authentication more accessible. The study will also investigate the preferences of users regarding PIN-pad interfaces through drawings and proposals of changes. The student will then analyse the results through inferential statistics. Depending on the quality of the outcome, the results will then be published in a paper and the student will be added to the authors list.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website (https://secuso.aifb.kit.edu/Studium_und_Lehre.php).
Content
The Praktikum Security, Usability and Society will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to mattia.mossano@kit.edu. Topics are assigned first-come-first-served until all of them are filled. Topics in italics have been already assigned.

There are two deadlines:

Important dates:
Kick-off: 05.10.2023, 09:00 AM CET in Big Blue Button - Link

Report & code feedback deadline: 01.03.2024, 23:59 CET
Feedback on Report & code: 08.03.2024, 23:59 CET
Final report + code deadline: 15.03.2024, 23:59 CET
Presentation draft deadline: 15.03.2024, 23:59 CET
Feedback on presentation draft: 19.03.2024, 23:59 CET
Final presentation deadline: 22.03.2024, 23:59 CET
Presentation day: 29.03.2024, 09:00 CET

Topics:

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec+ (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
Title: Making e-mails more visible by embedding moving images
Number of students: 1 Master
Description: In case of a security incident, it is necessary to inform the affected persons about their vulnerabilities as soon as possible. Within the context of the INSPECTION project, we are currently informing website owners via e-mail about security related vulnerabilities on their websites. Although e-mails have been shown to be the most cost-efficient means to deliver such information, they have not led to an appropriate remediation rate. While speaking to the affected website owners we learned that they would appreciate more information, although not being delivered as more text in the e-mail. Also, we learned that most e-mails were not read because they were considered spam. Thus, we need to find a way to make e-mail notifications more effective in raising peoples’ awareness. Videos have been proven effective to raise awareness in the context of IT security. The goal of the project will be, to explore ways to embed videos in an e-mail via HTML (either as gifs or as preview to a YouTube video). The challenge is to make this e-mail readable for different clients and webmail as well as getting it delivered through spam filters.

Designing Security User studies
These topics are related to how to set up and conduct user studies of various types. Online studies, interviews and lab studies are possible. At the end of the semester, the students present a report / paper and a talk in which they present their methodologies and the results of small pre-studies.
Title: Designing User Studies for Evaluating Biometric Authentication Systems
Number of students: 1 Bachelor or Master level
Description: The proposed topic focuses on designing and implementing a user study methodology to evaluate the usability and user perception of biometric authentication systems. Biometric authentication involves using unique physiological or behavioral characteristics, such as fingerprints, facial recognition, or voice patterns, to verify a user’s identity. The goal of this research is to understand the factors that affect the effectiveness and acceptance of biometric authentication and provide insights for designing user-friendly and secure biometric authentication systems.
Title: Can anxiety influences security advice?
Number of students: 1 Master level
Description: Nowadays ChatGPT is used for a multitude of reasons. One is to ask advice on security topics. However, previous research showed that oftentimes ChatGPT creates answers based on previous interactions with it. Therefore, is it possible that also security advice change according to the previous interaction? And if this is the case, can more anxious props lead to completely different results? The student will have to read the previous literature on ChatGPT, find expert advice on security topics and create an experiment to determine if anxiety influenced the advice given by ChatGPT.
Title: Investigating ChatGPT privacy tradeoffs and users perception of them (English only)
Number of students: 1 Master level
Description: As ChatGPT grows in popularity, it becomes increasingly vital to examine the privacy trade-offs associated with its usage. The user’s willingness to accept these trade-offs is instrumental in understanding the wider implications of employing AI language models. This topic involves a two-part exploration into the privacy trade-offs of using ChatGPT. Initially, the student will analyse ChatGPT’s Terms and Conditions and conduct a short literature review to identify potential privacy trade-offs. The found trade-offs need to be categorised into a set of trade-offs that will be investigated. Subsequently, the student will design an online user study, incorporating various question types and a deception study, to gauge the willingness of ChatGPT users to accept these trade-offs. Finally, the student will test the designed online user study in the course of small pre-test.

Run Usable Security Studies and Results Analysis
These topics are related to run and analyse the results of user-studies. Online studies, interviews and lab studies are all possible, depending on the topic. At the end of the semester, the students present a report / paper with the analyses conducted and a talk in which they present the results.

Title: Phishing through homographic attacks in messengers and social networks
Number of students: 1-2 Bachelor or Master level
Description: The task will be to test three types of attacks in messengers and social networks that work in some email clients. First is the link mismatch attack, where the link text differs from the actual link target. Second is an attack in which the actual link target is disguised by URL encoding [https://en.wikipedia.org/wiki/URL_encoding], and finally homographic attacks which uses Internationalized Domain Names [https://en.wikipedia.org/wiki/IDN_homograph_attack], in which Latin characters are replaced by characters of a different alphabet in the domain name. The attacks are predefined, so no knowledge of phishing techniques is required.

Title: Usability Study of Mobile Authentication for Elderly Users with Rheumatoid Arthritis (English only)
Number of students: 1 Bachelor or Master level
Description: Authentication is an ever important topic, especially in the mobile context. However, it becomes even more relevant when considering accessibility to it. Nowadays, a common authentication method is using a PIN. Yet, given the low hand mobility of users affected by rheumatoid arthritis, sometimes using PINs can be difficult. In this topic, the student will conduct several sessions of an already designed lab study with various participants using arthritis simulation gloves to evaluate three PIN-pad interfaces aimed at making authentication more accessible. The study will also investigate the preferences of users regarding PIN-pad interfaces through drawings and proposals of changes. The student will then analyse the results through inferential statistics. Depending on the quality of the outcome, the results will then be published in a paper and the student will be added to the authors list.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website [https://secuso.aifb.kit.edu/Studium_und_Lehre.php].

Practical lab Security, Usability and Society (Bachelor)
2512554, SS 2024, 3 SWS, Language: German/English, Open in study portal
Content
The Praktikum Security, Usability and Society will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to mattia.mossano@kit.edu. Topics are assigned first-come-first-served until all of them are filled. Topics in italics have already been assigned.

Application deadline: 12.04.2024
Assignment: 15.04.2024
Confirmation deadline: 19.04.2024

Important dates:
Kick-off: 17.04.2024, 09:00 AM CET in Big Blue Button - Link
Report & code feedback deadline: 26.07.2024, 23:59 CET
Feedback on Report & code: 16.08.2024, 23:59 CET
Final report & code deadline: 01.09.2024, 23:59 CET
Presentation draft deadline: 06.09.2024, 23:59 CET
Feedback on presentation draft: 13.09.2024, 23:59 CET
Final presentation deadline: 17.09.2024, 23:59 CET
Presentation day: 18.09.2024, 09:00 CET

Topics:

Privacy Friendly Apps
In this area, students complete an app (or an extension of an app) among our Privacy-Friendly Apps. Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php. Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
Title: NoPhish App
Number of students: 2 Ba/Ma
Description: The NoPhish app was one of the first measures from the NoPhish concept. The app has been around for a long time and has not been updated since then. Accordingly, the task of the project is to make the app functional for the current Android version. The app is also to be optimised so that updates, e.g. new chapters, can be added easily.

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, e.g. as an extension like TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PASSSECPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
Title: Hacking TORPEDO
Number of students: 1-2 Ba/Ma
Description: TORPEDO has existed for many years both as a Thunderbird add-on and as a web extension. TORPEDO is intended to help address various forms of phishing attacks and thereby protect the user, e.g. against various manipulations of the domain or additional tooltips. However, no targeted attacks on TORPEDO have yet been found. The aim of the work is to subject TORPEDO to a stress test and also to develop attacks that specifically target the implementation of TORPEDO.

Run Usable Security Studies and Results Analysis
These topics are related to run and analyse the results of user-studies. Online studies, interviews and lab studies are all possible, depending on the topic. At the end of the semester, the students present a report / paper with the analyses conducted and a talk in which they present the results.
Title: Visualization of Eye Gaze Patterns during Authetication Tasks
Number of students: 1 Ba/Ma
Description: In this project, students will analyze and visualize eye gaze data collected during two specific authentication tasks: the Dot Task and the Slider Task. The primary objective is to represent subjects’ eye movements visually, enhancing the understanding of gaze patterns during the authentication process. "Dot Task Visualization:" For the Dot Task, participants were instructed to focus on a sequence of dots displayed on a screen. The dataset includes the positions of these dots and the corresponding gaze locations of the subjects. The student’s task is to create a dynamic visualization that not only represents these positions accurately but also illustrates the sequence in which the dots were focused on by the subjects. "Slider Task Visualization:" The Slider Task involved presenting participants with a series of images, for which both the images’ locations on the screen and the subjects’ gaze locations are recorded. The challenge is to develop a heatmap visualization based on this data, effectively demonstrating the concentration and dispersion of gaze points across different images.
Title: Compare BSI Phishing Game with the NoPhish Game
Number of students: 1 Ba
Description: The NoPhish app, one of the first implementations of the NoPhish concept, is a form of serious game. The BSI has also developed a game in the field of phishing. Both "games" use different approaches to impart knowledge from the same context. The aim is to evaluate the two games in terms of similarities and differences.

Title: Phishing Advice from Organizations (English Only)
Number of students: 1 Ba
Description: Many companies distribute information on how to recognise phishing via various channels such as e-mails, e.g. Amazon or Telekom. The question arises as to how helpful these tips are in reality. Are they too specific to the context of the company or so abstractly formulated that they are of no real help to users? The aim of the work is to collect various hints and then compare them with the hints of the NoPhish concept in order to find differences and similarities between the hints and the concept.

Title: Chatbots for Literature Reviews
Number of students: 1 Ba
Description: Chatbots are becoming increasingly popular and are already being used in various areas. But in what form can these bots be used for science? The variety of chatbots also raises the question of whether there are chatbots that are better suited to a scientific context. The aim is to identify a selection of chatbots and evaluate them in terms of their effectiveness for future literature research. To this end, the results of the chatbots will be compared with the ACM database in order to check their effectiveness for finding literature for a specific period of time.

Title: Phishing through homographic attacks in messengers and social networks
Number of students: 1-2 Ba/Ma
Description: The task will be to test three types of attacks in messengers and social networks that work in some email clients. First is the link mismatch attack, where the link text differs from the actual link target. Second is an attack in which the actual link target is disguised by URL encoding [https://en.wikipedia.org/wiki/URL_encoding], and finally homographic attacks which uses Internationalized Domain Names [https://en.wikipedia.org/wiki/IDN_homographAttack], in which Latin characters are replaced by characters of a different alphabet in the domain name. The attacks are predefined, so no knowledge of phishing techniques is required.

Title: Usability Study of Mobile Authentication for Elderly Users with Rheumatoid Arthritis (English only)
Number of students: 1 Ba/Ma
Description: Authentication is an ever important topic, especially in the mobile context. However, it becomes even more relevant when considering accessibility to it. Nowadays, a common authentication method is using a PIN. Yet, given the low hand mobility of users affected by rheumatoid arthritis, sometimes using PINs can be difficult. In this topic, the student will conduct several sessions of an already designed lab study with various participants using arthritis simulation gloves to evaluate three PIN-pad interfaces aimed at making authentication more accessible. The study will also investigate the preferences of users regarding PIN-pad interfaces through drawings and proposals of changes. The student will then analyse the results through inferential statistics. Depending on the quality of the outcome, the results will then be published in a paper and the student will be added to the authors list.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website (https://secuso.aifb.kit.edu/Studium_und_Lehre.php).
8.5 Course: Advanced Lab Sociotechnical Information Systems Development (Bachelor) [T-WIWI-111124]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101426 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Description</th>
<th>SWS</th>
<th>Role</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2512400</td>
<td>Practical Course Sociotechnical Information Systems Development (Bachelor)</td>
<td>3</td>
<td>Practical course</td>
<td>Sunyaev, Goram, Leiser</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900080</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td>Sunyaev</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900016</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td>Sunyaev</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None
8.6 Course: Advanced Programming - Application of Business Software [T-WIWI-102748]

Responsible:
Prof. Dr. Stefan Klink
Prof. Dr. Andreas Oberweis

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-105112 - Applied Informatics

Type
- Written examination

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Programming - Application of Business Software</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Klink</td>
</tr>
<tr>
<td>Exercises Advanced Programming - Application of Business Software</td>
<td>1 SWS</td>
<td>Practice / 📚</td>
<td>Klink, Schreiber</td>
</tr>
<tr>
<td>Advanced Programming - Application of Business Software</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Klink</td>
</tr>
<tr>
<td>Advanced Programming - Application of Business Software</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate

The success control takes place in the form of a written examination. The duration of the exam is 60 minutes in the winter semester 2020/21 and in the summer semester 2021. The examination is offered every semester and can be repeated at any regular examination date.

The prerequisite for taking the exam is successful participation in a computer lab. Attendance is compulsory for individual dates of the lab. More detailed information on participation in the exercises and labs will be announced in the first lecture hour and on the lecture homepage.

Admission can only be acquired in the winter semester and is valid indefinitely.

Prerequisites

This course cannot be taken together with Advanced Programming - Java Network Programming.

Recommendation

Knowledge of the course "Grundlagen der Informatik I und II" are helpful.

Below you will find excerpts from events related to this course:

Advanced Programming - Application of Business Software

2511026, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)
Content
Business information systems enable, support, and accelerate new forms of business processes and forms of organisation. They are the central infrastructure of the economy in the age of eBusiness. Thus, basic knowledge is given in lectures, in exercises and in the computer lab which deals with installation, configuration and parameterization of business information systems. The course communicates profound knowledge in following topics:

- Analysis of cooperation scenarios and business process scenarios
- Selection of modelling methods according to defined criteria
- Implementation of business process models and cooperation models with the help of standard software
- Identification and assessment of challenges during the installation of information systems
- Economical evaluation of business information systems.

This course cannot be taken together with Advanced Programming - Java Network Programming [2511020].

Learning objectives:
Students

- explain basic concepts and principles of enterprise information systems,
- describe the components of enterprise information systems,
- assess economical aspects of such systems,
- apply standard software for modelling business processes and for analysing them to given criteria.

Recommendations:
Knowledge of the course “Grundlagen der Informatik I und II” are helpful.

Workload:

- Lecture 30h
- Exercise course 17h
- Review and preparation of lectures 23h
- Review and preparation of exercises 10h
- Computer Lab 30h
- Exam preparation 26h
- Exam 1h
- Total 150 h

Exercise courses are done by student tutors (size about 50 students)

Literature

Weitere Literatur wird in der Vorlesung bekannt gegeben.
8 COURSES

Course: Advanced Programming - Java Network Programming [T-WIWI-102747]

8.7 Course: Advanced Programming - Java Network Programming [T-WIWI-102747]

Responsibility: Prof. Dr. Dietmar Ratz
Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105112 - Applied Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>5</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2511020</th>
<th>Advanced Programming - Java Network Programming</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Ratz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2511021</td>
<td>Tutorium zu Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java</td>
<td>1 SWS</td>
<td>Tutorial / Blended (On-Site/Online)</td>
<td>Ratz, Stegmaier, Schneider, Mütsch</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2511023</td>
<td>Rechnerpraktikum zu Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java</td>
<td>2 SWS</td>
<td>/ Blended (On-Site/Online)</td>
<td>Ratz, Stegmaier, Schneider, Mütsch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7900020</th>
<th>Advanced Programming - Java Network Programming</th>
<th>Ratz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>7900041</td>
<td>Advanced Programming - Java Network Programming</td>
<td>Ratz</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

At the end of the lecture period, a written examination (90 min.) is offered (according to §4(2), 1 SPO), for which - through successful participation in the exercises during the semester - admission must be obtained. The exact details will be announced in the lecture. The examination is offered every semester and can be repeated at any regular examination date.

A bonus can be earned through successful participation in the exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

This course cannot be taken together with Advanced Programming - Application of Business Software [2511026].

Annotation

The registration for the participation in the computer lab (precondition for the exam participation) already takes place in the first lecture week!

Below you will find excerpts from events related to this course:

Advanced Programming - Java Network Programming
2511020, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site
Content
In the lecture, the exercises and computer labs to this course the practical handling with the programming language Java dominating within the range of economical applications is obtained. The basis for this is the current language standard. The knowledge from the lecture Introduction to Programming with Java will be deepened and extended. This is done, among other things, by addressing commercially relevant topics such as object-oriented modeling and programming, class hierarchy and inheritance, threads, applications and applets, AWT and Swing components for graphical user interfaces, exception and event processing, lambda expressions, input/output via streams, applications in networks, Internet communication, client and server programming, remote method invocation, servlets, Java Server Pages and Enterprise Java Beans.

This course cannot be taken together with Advanced Programming - Application of Business Software [2540886/2590886].

Learning objectives:
- Students learn the practical use of the object-oriented programming language Java and are enabled to design and implement component-based Internet applications using the latest technologies and tools.
- The ability to select and design these methods and systems appropriate to the situation and to use them for solving problems is imparted.
- Students are empowered to find strategic and creative answers in the search for solutions to well-defined, concrete and abstract problems.

Workload:
The total workload for this course is approximately 150 hours.

Organizational issues
Die Anmeldung zur Teilnahme am Rechnerpraktikum (Vorbedingung zur Klausurteilnahme) findet bereits in der ersten Vorlesungswoche statt!

Literature

Weiterführende Literatur:
- Weitere Literatur wird in der Vorlesung bekannt gegeben.
8.8 Course: Advanced Topics in Economic Theory [T-WIWI-102609]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Lecture</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2520527</td>
<td>Advanced Topics in Economic Theory</td>
<td>Lecture / 👤</td>
<td>2 SWS</td>
<td>Mitusch, Brumm</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2520528</td>
<td>Übung zu Advanced Topics in Economic Theory</td>
<td>Practice / 👤</td>
<td>1 SWS</td>
<td>Pegorari, Corbo</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☕ Blended (On-Site/Online), 👤 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the end of the lecture period or at the beginning of the following semester.

Prerequisites

None

Recommendation

This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Below you will find excerpts from events related to this course:

Advanced Topics in Economic Theory

2520527, SS 2024, 2 SWS, Language: English, [Open in study portal](#)

Literature

Die Veranstaltung wird in englischer Sprache angeboten:

The course is based on the excellent textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A. Mas-Colell, M.D. Whinston, and J.R. Green.
8.9 Course: Analysis of Social Structures (WiWi) [T-GEISTSOZ-109047]

Responsible: Prof. Dr. Gerd Nollmann

Organisation: KIT Department of Humanities and Social Sciences

Part of: M-GEISTSOZ-101167 - Sociology/Empirical Social Research

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>5011007</td>
<td>Analysis of Social Structures</td>
<td>Practice / Nollmann</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>7400029</td>
<td>Analysis of Social Structures (WiWi)</td>
<td>Nollmann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: ⏯ Online, 🕒 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.10 Course: Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines [T-MACH-105173]

Responsible: Dr.-Ing. Marcus Gohl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

Events

| ST 2024 | 2134150 | Gas, lubricating oil and operating media analysis in drive train development | 2 SWS | Lecture / Gohl |

Legend: 📱 Online, 🌐 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate
Letter of attendance or oral exam (25 minutes, no auxiliary means)

Prerequisites
none

Below you will find excerpts from events related to this course:

Gas, lubricating oil and operating media analysis in drive train development

2134150, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Literature

Die Vorlesungsunterlagen werden vor jeder Veranstaltung an die Studenten verteilt.
8 COURSES

8.11 Course: Analysis of Multivariate Data [T-WIWI-103063]

Responsible: Prof. Dr. Oliver Grothe
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101599 - Statistics and Econometrics
M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2550551</th>
<th>2 SWS</th>
<th>Practice / 🖥</th>
<th>Grothe, Kächele</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2550550</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grothe</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2550551</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Grothe, Kaplan, Liu</td>
</tr>
</tbody>
</table>

Exams

| ST 2024 | 7900033 | Analysis of Multivariate Data | Grothe |

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites
None

Recommendation
Attendance of the courses Statistics 1 [2600008] and Statistics 2 [2610020] is recommended.

Annotation
The lecture is not offered regularly. The courses planned for three years in advance can be found online.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>V</th>
<th>Lecture (V) On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550550, SS 2024, 2 SWS, Open in study portal</td>
<td></td>
</tr>
</tbody>
</table>

Literature
Skript zur Vorlesung
8.12 Course: Analysis Tools for Combustion Diagnostics [T-MACH-105167]

Responsibility: Jürgen Pfeil

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2134134</th>
<th>Analysis tools for combustion diagnostics</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Pfeil</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105167</th>
<th>Analysis Tools for Combustion Diagnostics</th>
<th>Koch</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Analysis tools for combustion diagnostics
2134134, SS 2024, 2 SWS, Language: German, [Open in study portal]

Literature
Skript, erhältlich in der Vorlesung
8.13 Course: Applied Informatics – Applications of Artificial Intelligence [T-WIWI-110340]

Responsible: Dr.-Ing. Michael Färber

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101426 - Electives in Informatics
- M-WIWI-105112 - Applied Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2511314</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Färber, Käfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2511315</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Färber, Käfer, Qu, Yuan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 79AIFB_AKI_C1</td>
<td></td>
<td></td>
<td>Färber</td>
<td></td>
</tr>
<tr>
<td>ST 2024 79AIFB_AKI_C1</td>
<td></td>
<td></td>
<td>Färber</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written Examination (60 min) according to §4, Abs. 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, of the examination regulations. The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites
None.

Recommendation
Basics in logic, e.g. from lecture Foundations of Informatics 1 are important.

Below you will find excerpts from events related to this course:

Applied Informatics - Applications of Artificial Intelligence
2511314, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content
The lecture provides insights into the fundamentals of artificial intelligence. Basic methods of artificial intelligence and their applications in industry are presented.

Applications of the AI is a sub-area of computer science dealing with the automation of intelligent behavior. In general, it is a question of mapping human intelligence. Methods of artificial intelligence are presented in various areas such as, for example, question answering systems, speech recognition and image recognition.

The lecture gives an introduction to the basic concepts of artificial intelligence. Essential theoretical foundations, methods and their applications are presented and explained.

This lecture aims to provide students with a basic knowledge and understanding of the structure, analysis and application of selected methods and technologies on artificial intelligence. The topics include, among others, knowledge modeling, machine learning, text mining, uninformed search, and intelligent agents.

Learning objectives:
The students

- consider current research topics in the field of artificial intelligence and in particular learn about the topics of knowledge modeling, machine learning, text mining and uninformed search.
- interdisciplinary thinking.
- technological approaches to current problems.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Exercises to Applied Informatics - Applications of Artificial Intelligence
2511315, WS 23/24, 1 SWS, Language: German, Open in study portal

Content
The exercises are oriented on the lecture applications of AI.

Multiple exercises are held that capture the topics, held in the lecture Applications of AI and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

This lecture aims to provide students with a basic knowledge and understanding of the structure, analysis and application of selected methods and technologies on artificial intelligence. The topics include, among others, knowledge modeling, machine learning, text mining, uninformed search, and intelligent agents.

Learning objectives:
The students

- consider current research topics in the field of artificial intelligence and in particular learn about the topics of knowledge modeling, machine learning, text mining and uninformed search.
- interdisciplinary thinking.
- technological approaches to current problems.

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101426 - Electives in Informatics
- M-WIWI-105112 - Applied Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2511200</td>
<td>Applied Informatics - Database Systems</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Sommer</td>
<td></td>
</tr>
<tr>
<td>ST 2024 2511201</td>
<td>Exercises Applied Informatics - Database Systems</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Sommer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 79AIFB_DBS_C5</td>
<td>Applied Informatics – Database Systems</td>
<td></td>
<td>Oberweis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 79AIFB_DBS_B1</td>
<td>Applied Informatics - Database Systems (Registration until 15 July 2024)</td>
<td>Oberweis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes) in the first week after lecture period.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-WIWI-102660 - Database Systems must not have been started.

Annotation
Replaces from summer semester 2020 T-WIWI-102660 "Database Systems".

Below you will find excerpts from events related to this course:

Applied Informatics - Database Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (V)</td>
<td>On-Site</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content
Database systems (DBS) play an important role in today's companies. Internal and external data is stored and processed in databases in every company. The proper management and organization of data helps to solve many problems, enables simultaneous queries from multiple users and is the organizational and operational base for the entire working procedures and processes of the company. The lecture leads in the area of the database theory, covers the basics of database languages and database systems, considers basic concepts of object-oriented and XML databases, conveys the principles of multi-user control of databases and physical data organization. In addition, it gives an overview of business problems often encountered in practice such as:

- Correctness of data (operational, semantic integrity)
- Restore of a consistent database state
- Synchronization of parallel transactions (phantom problem).

Learning objectives:
Students
- are familiar with the concepts and principles of data base models, languages and systems and their applications and explain it,
- design and model relational data bases on the basis of theoretical foundations,
- create queries for relational databases,
- know how to handle enhanced data base problems occurring in the enterprises.

Workload:
- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Literature

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Exercises Applied Informatics - Database Systems
2511201, SS 2024, 1 SWS, Language: German, Open in study portal

Content
Database systems (DBS) play an enormously important role in today's companies. The internal and external data is stored and processed in the database of the respective company. The correct management and organization of this data helps to solve numerous problems, enables simultaneous queries by several users and is the organizational and operational basis for the entire workflows and processes of the company.

The lecture introduces the field of database theory, covers the basics of database languages and database systems, teaches the principles of multi-user database control and physical data organization. In addition, it provides an overview of database problems often encountered in business practice, such as the correctness of data (operational, semantic integrity), the recovery of a consistent database state, and the synchronization of parallel transactions.

Literature

Responsible: Prof. Dr. Melanie Volkamer

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101426 - Electives in Informatics
- M-WIWI-105112 - Applied Informatics

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2511550</td>
<td>Applied Informatics - Information Security</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
<tr>
<td>ST 2024 2511551</td>
<td>Exercise Applied Informatics - Information Security</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 79AIFB_IS_A2</td>
<td>Applied Informatics – Information Security</td>
<td></td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 79AIFB_IS_A1</td>
<td>Applied Informatics – Information Security (Registration until 15 July 2024)</td>
<td></td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (30 min) following §4, Abs. 2, 2 of the examination regulation, for which admission must be obtained through successful participation in the exercise during the semester.

The exam takes place every semester and can be repeated at every regular examination date.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-WIWI-108387 - Information Security must not have been started.

Annotation Competence Goal

The student

- can explain and apply the basics of information security
- knows appropriate measures to achieve different protection goals and can implement these measures
- can assess the quality of organizational protective measures, i.e. among other things
- knows what has to be taken into account when using the individual measures
- understands the differences between information security in the enterprise and in the private context
- knows the areas of application of a variety of relevant standards and knows their weaknesses
- knows and can explain the problems of information security which may arise from human-machine interaction
- can assess messages about detected security problems in a critical way
- can structure a software project in the field of information security and explain and present results in oral and written form
- can use the techniques of Human Centred Security and Privacy by Design to create user-friendly software.

Content

- Basics and concepts of information security
- Understanding the protection objectives of information security and various attack models (including associated assumptions)
- Introduction of measures to achieve the respective protection goals, taking into account different attack models
- Note: In contrast to the IT Security lecture, measures such as encryption algorithms are treated only abstractly, i.e. the idea of the measure, assumptions to the attacker and the deployment environment.
- Presentation and analysis of problems of information security arising from human-machine interaction and presentation of the Human Centered Security by Design approach.
- Introduction into organizational protective measures and standards to be observed for companies.
Below you will find excerpts from events related to this course:

Applied Informatics - Information Security

- **Code:** 2511550, **SS 2024**, 2 SWS, [Open in study portal](#)
- **Lecture (V)**
- **On-Site**

Content

- Basics and concepts of information security
- Understanding the protection objectives of information security and various attack models (including associated assumptions)
- Introduction of measures to achieve the respective protection goals, taking into account different attack models
- Note: In contrast to the IT Security lecture, measures such as encryption algorithms are treated only abstractly, i.e. the idea of the measure, assumptions to the attacker and the deployment environment.
- Presentation and analysis of problems of information security arising from human-machine interaction and presentation of the Human Centered Security by Design approach.
- Introduction into organisational protective measures and standards to be observed for companies

Learning objectives:

The student

- can explain the basics of information security
- knows suitable measures to achieve different protection goals
- can assess the quality of organisational protective measures, i.e. among other things knows what has to be taken into account when using the individual measures
- understands the differences between information security in the organisational and in the private context
- knows the areas of application of different standards and knows their weaknesses
- knows and can explain the problems of information security that arise from human-machine interaction
- is able to deal with messages concerning found security problems in a critical way.

This course can also be credited for the KASTEL certificate. Further information about obtaining the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.

Literature

Exercise Applied Informatics - Information Security

- **Code:** 2511551, **SS 2024**, 1 SWS, [Open in study portal](#)
- **Practice (Ü)**
- **On-Site**

Content

This course can also be credited for the KASTEL certificate. Further information about obtaining the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.
8.16 Course: Applied Informatics – Modelling [T-WIWI-110338]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101426 - Electives in Informatics
- M-WIWI-105112 - Applied Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2511030</th>
<th>Applied Informatics - Modelling</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Oberweis, Schiefer, Schüler</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2511031</td>
<td>Exercises to Applied Informatics - Modelling</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Oberweis, Schiefer, Schüler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>79AIFB_AI1_C4</th>
<th>Applied Informatics – Modelling</th>
<th>Oberweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>79AIFB_AI1_B2</td>
<td>Applied Informatics - Modelling (Registration until 15 July 2024)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written examination (60 min) in the first week after lecture period (according to Section 4 (2),1 of the examination regulation).

Prerequisites
None

Below you will find excerpts from events related to this course:

Applied Informatics - Modelling
2511030, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content
In the context of complex information systems, modelling is of central importance, e.g. – in the context of systems to be developed – for a better understanding of their functionality or in the context of existing systems for supporting maintenance and further development.

Modelling, in particular modelling of information systems, forms the core part of this lecture. The lecture is organized in two parts. The first part mainly covers the modelling of static aspects, the second part covers the modelling of dynamic aspects of information systems.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets together with their respective analysis techniques will be introduced.

Learning objectives:
Students
- explain the strengths and weaknesses of various modeling approaches for Information Systems and choose an appropriate method for a given problem,
- create UML models, ER models and Petri nets for given problems,
- modelling given situations in propositional and predicate logic and can interpret them,
- analyze various properties in propositional and predicate logic,
- create and evaluate a relational database schema and express queries in relational algebra.

Workload:
- Total effort: 120-135 hours
- Presence time: 45 hours
- Self study: 75-90 hours
Content
In the context of complex information systems, modelling is of central importance, e.g. – in the context of systems to be developed – for a better understanding of their functionality or in the context of existing systems for supporting maintenance and further development.

Modelling, in particular modelling of information systems, forms the core part of this lecture. The lecture is organized in two parts. The first part mainly covers the modelling of static aspects, the second part covers the modelling of dynamic aspects of information systems.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets together with their respective analysis techniques will be introduced.

Learning objectives:
Students
- explain the strengths and weaknesses of various modeling approaches for Information Systems and choose an appropriate method for a given problem,
- create UML models, ER models and Petri nets for given problems,
- modelling given situations in propositional and predicate logic and can interpret them,
- analyze various properties in propositional and predicate logic,
- create and evaluate a relational database schema and express queries in relational algebra.

Workload:
- Total effort: 120-135 hours
- Presence time: 45 hours
- Self study: 75-90 hours

Organizational issues
Bei Bedarf wird ein Tutorium online angeboten.

Literature

Weiterführende Literatur:

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-101426 - Electives in Informatics
M-WIWI-105112 - Applied Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2511032</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Sunyaev</td>
<td></td>
</tr>
<tr>
<td>ST 2024 2511033</td>
<td>1 SWS</td>
<td>Practice / 🧩</td>
<td>Sunyaev, Rank, Guse</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 79AIFB_AI2_A2</td>
<td></td>
<td>Applied Informatics - Internet Computing (Registration until 15 July 2024)</td>
<td>Sunyaev</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is recommended for the written exam, which is offered at the end of the winter semester and at the end of the summer semester.
Successful participation in the exercise by submitting correct solutions to 50% of the exercises can earn a grade bonus. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None

Annotation
Replaces from winter semester 2019/2020 T-WIWI-109445 "Applied Informatics - Internet Computing".

Below you will find excerpts from events related to this course:

Applied Informatics - Internet Computing
2511032, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site
Content
The lecture Applied Computer Science - Internet Computing provides insights into fundamental concepts and future technologies of distributed systems and Internet computing. Students should be able to select, design and apply the presented concepts and technologies. The course first introduces basic concepts of distributed systems (e.g. design of architectures for distributed systems, internet architectures, web services, middleware).

In the second part of the course, emerging technologies of Internet computing will be examined in depth. These include, among others:

- Cloud Computing
- Edge & Fog Computing
- Internet of Things
- Blockchain
- Artificial Intelligence

Learning objectives:
The student learns about basic concepts and emerging technologies of distributed systems and Internet computing. Practical topics will be deepened in lab classes.

Recommendations:
Knowledge of content of the module [WI1INFO].

Workload:
The total workload for this course is approximately 135-150 hours.

Literature
Wird in der Vorlesung bekannt gegeben
8.18 Course: Applied Informatics – Software Engineering [T-WIWI-110343]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101426 - Electives in Informatics
- M-WIWI-105112 - Applied Informatics

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2511206</th>
<th>Applied Informatics - Software Engineering</th>
<th>2 SWS</th>
<th>Lecture / 🗣️</th>
<th>Oberweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2511207</td>
<td>Übungen zu Angewandte Informatik - Software Engineering</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Oberweis, Forell, Frister, Schüler, Fritsch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>79AIFB_SE_B1</th>
<th>Applied Informatics – Software Engineering</th>
<th>Oberweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>79AIFB_SE_B3</td>
<td>Applied Informatics - Software Engineering (Registration until 15 July 2024)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ⌚️ Cancelled

Competence Certificate
The assessment consists of an 1h written exam in the first week after lecture period.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-WIWI-100809 - Software Engineering must not have been started.

Below you will find excerpts from events related to this course:

Applied Informatics - Software Engineering

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>2511206, SS 2024, 2 SWS, Language: German, Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site</td>
<td></td>
</tr>
</tbody>
</table>
Content
The course deals with fundamental aspects of the systematically development of huge software systems. The course covers topics such as:

- software developing process models
- methods and tools for the development phases: requirements analysis, system specification, system design, programming and testing.

Learning objectives:
Students

- are familiar with the concepts and principles of software engineering and can discuss it,
- know common software development process models and their strengths and weaknesses and can discuss it,
- know methods for requirements analysis and can use it and can model and evaluate use case models,
- know models for systems structuring and controlling as well as architecture principles of software systems and can discuss it,
- can model and evaluate component diagrams
- are familiar with basic concepts of software quality management and are able to apply software test and evaluation methods in concrete situations.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Literature

Weitere Literatur wird in der Vorlesung bekannt gegeben.
8.19 Course: Artificial Intelligence in Production [T-MACH-112115]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Online</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2149921</td>
<td>Artificial Intelligence in Production</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type / Online</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-112115</td>
<td>Artificial Intelligence in Production</td>
<td>Lecture / Online</td>
<td>Fleischer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-112115</td>
<td>Artificial Intelligence in Production</td>
<td>Lecture / Online</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (90 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Artificial Intelligence in Production

2149921, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)
Content
The module AI in Production is designed to teach students the practical, holistic integration of machine learning and artificial intelligence methods in production. The course is oriented towards the phases of the CRISP-DM process with the aim of developing a deep understanding of the necessary steps and content-related aspects (methods) within the individual phases. In addition to teaching the practical aspects of integrating the most important machine learning methods, the focus is primarily on the necessary steps for data generation and data preparation as well as the implementation and validation of the methods in an industrial environment.

The lecture "Artificial Intelligence in Production" deals with the theoretical basics in a practical context. Here, the six phases of the CRISP-DM process are run through sequentially and the necessary basics for the implementation of the respective phases are taught. The course first deals with the data sources that are prevalent in the production environment. Subsequently, possibilities for target-oriented data acquisition as well as data transfer and data storage are introduced. Possibilities for data filtering and data preprocessing are discussed and production-relevant aspects are pointed out. The course then covers in detail the necessary algorithms and procedures for implementing AI in production, before techniques and fundamentals for making the models permanent in production (deployment) are discussed.

Learning Outcomes:

The students

- understand the relevance for the application of AI in production and know the main drivers and challenges.
- will understand the CRISP-DM process for implementing AI projects in manufacturing. Students will be able to name the main data sources, data ingestion methods, communication architectures, models and methods for data processing.
- will understand the main machine learning techniques and be able to contrast and select them in the context of industrial issues.
- are able to assess whether a specific problem in the context of production can be solved in a target-oriented manner using machine learning methods, as well as what the necessary steps are for implementation.
- are able to assess the most important challenges and name possible approaches to solve them.
- are able to apply the phases of the CRISP-DM to a problem in production. Students will know the steps necessary to build a data pipeline and will be able to do so theoretically in the context of a real-world use case.
- are able to evaluate the results of common deep learning methods and, based on this, to theoretically elaborate and theoretically apply proposed solutions (from the field of machine learning).

Workload:
MACH:
regular attendance: 31,5 hours
self-study: 88,5 hours
WING:
regular attendance: 31,5 hours
self-study: 118,5 hours

Organizational issues
Vorlesungstermine freitags 14:00 Uhr, Übungstermine freitags 15:45 Uhr.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.
The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.20 Course: Auction & Mechanism Design [T-WIWI-102876]

Responsible: Prof. Dr. Nora Szech
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101499 - Applied Microeconomics
M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2560550</th>
<th>Digitale Märkte und Mechanismen</th>
<th>2 SWS</th>
<th>Lecture / Rosar</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2560551</td>
<td>Übung zu Digitale Märkte und Mechanismen</td>
<td>1 SWS</td>
<td>Practice / Rosar</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7900007</th>
<th>Exam Digitale Märkte und Mechanismen (2)</th>
<th>Puppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>7900161</td>
<td>Exam Digitale Märkte und Mechanismen</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

A bonus can be earned through successful participation in the exercise. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites
None

Recommendation
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Annotation
The lecture will be held in English.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2560550</th>
<th>Digitale Märkte und Mechanismen</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Open in study portal</td>
<td>On-Site</td>
</tr>
</tbody>
</table>
Content
Many businesses in the digital economy monetize through auctions. For example, every time you use Google, an auction is held in the background. This course develops the basic theory of auctions and mechanism design that is necessary for gaining a deeper understanding of many markets in the digital economy.

The course starts with the basic theory of equilibrium behavior and revenue management in single-object standard auctions. The revenue equivalence theorem for standard auctions is introduced. Thereafter, the course focuses on mechanism design and its applications to single-object auctions and bilateral trade.

The students
- learn to analyze strategic behavior in auctions;
- learn to compare auction formats with regard to efficiency and revenue;
- are familiarized with the basic theory of (Bayesian) mechanism design;
- learn to master the revenue equivalence theorem for standard auctions;
- learn to apply mechanism design to one object auctions and bilateral trade.

The assessment consists of a written exam (60 minutes).

The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Through successful participation in the Exercise, students can earn a bonus. If the grade on the written exam is between 4.0 and 1.3 the bonus improves the grade by one step (0.3 or 0.4). Details will be announced during the lecture.

The total workload for this course is approximately 135.0 hours. For further information see German version.

Recommendations:
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Literature
8.21 Course: Automotive Engineering I [T-MACH-102203]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101266 - Automotive Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Online</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4 SWS</td>
<td>Gauterin, Gießler</td>
<td>KIT Department of Mechanical Engineering</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lecture / Online</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4 SWS</td>
<td>Gauterin</td>
<td>KIT Department of Mechanical Engineering</td>
</tr>
<tr>
<td>ST 2024</td>
<td>4 SWS</td>
<td>Gauterin</td>
<td>KIT Department of Mechanical Engineering</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate
Written examination

Duration: 120 minutes

Auxiliary means: none

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-MACH-100092 - Automotive Engineering I must not have been started.

Below you will find excerpts from events related to this course:

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".
Organizational issues
You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/PasswoerterIlia/, students from eucor universities send an e-mail to martina.kaiser@kit.edu

Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literature
Course: Automotive Engineering I [T-MACH-100092]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101266 - Automotive Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Weeks 23/24</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113805</td>
<td>76-T-MACH-100092</td>
<td>Automotive Engineering</td>
<td>4 SWS</td>
<td>Lecture / On-Site</td>
<td>Gauterin, Gießler</td>
</tr>
<tr>
<td>2113809</td>
<td>76-T-MACH-100092</td>
<td>Automotive Engineering</td>
<td>4 SWS</td>
<td>Lecture / On-Site</td>
<td>Gauterin, Gießler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-100092</td>
<td>Automotive Engineering</td>
<td></td>
<td>Unrau, Gauterin</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination

Duration: 120 minutes

Auxiliary means: none

Prerequisites

The brick "T-MACH-102203 - Automotive Engineering I" is not started or finished. The bricks "T-MACH-100092 - Grundlagen der Fahrzeugtechnik I" and "T-MACH-102203 - Automotive Engineering I" can not be combined.

Below you will find excerpts from events related to this course:

Content

1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performance, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:

The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle”.

Organizational issues

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIllas/

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIllas/

Kann nicht mit der Veranstaltung [2113809] kombiniert werden.

Can not be combined with lecture [2113809].

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
Literature

Automotive Engineering I
2113809, WS 23/24, 4 SWS, Language: English, Open in study portal

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Learning Objectives:
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system "vehicle".

Organizational issues
You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/PasswoerterIlias/, students from eucor universities send an e-mail to martina.kaiser@kit.edu

Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literature
8.23 Course: Automotive Engineering II [T-MACH-102117]

Responsible: Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101266 - Automotive Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Location</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gießler</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Location</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Unrau, Gauterin</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2</td>
<td>Automotive Engineering II</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Gauterin, Gießler</td>
</tr>
</tbody>
</table>

Legend: 🇩 Online, 🇪 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate

Written Examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Content

1. **Chassis:** Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. **Steering elements:** Manual steering, servo steering, steer by wire
3. **Brakes:** Disc brake, drum brake, comparison of designs

Learning Objectives:

The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Organizational issues

Kann nicht mit der Veranstaltung [2114855] kombiniert werden.
Can not be combined with lecture [2114855]
Content

1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of the designs

Learning Objectives:
The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Literature

Elective literature:

Course: B2B Sales Management [T-WIWI-111367]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101424 - Foundations of Marketing

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Examination of another type</td>
<td>1</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Examination of another type</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Practice / Online</td>
<td>1</td>
</tr>
<tr>
<td>ST 2024</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Practice / Online</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of success takes place through the preparation and presentation of a sales presentation based on a case study (max 30 points) and a written exam with additional aids in the sense of an open book exam (max. 60 points). In total, a maximum of 90 points can be achieved in the course. Further details will be announced during the lecture.

Prerequisites
None.

Annotation
For further information, please contact Marketing and Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:
Content

The event is designed to teach you taking on marketing responsibility in a very special business environment. This involves companies that sell and market their (often technically highly complex) products themselves to other companies, which is referred to as "business-to-business" (B2B) marketing and sales. Since traditional communication instruments (e.g. advertising) often hardly work in this environment and many projects lead to a long-term cooperation between supplier and customer, (personal) sales play a special role in marketing. Therefore, this event introduces marketing in B2B markets on the one hand and deals with questions of sales and distribution on the other hand.

Topics with regard to B2B sales management are:

- Basic aspects of B2B sales and B2B purchasing
- Understanding of marketing challenges in specific B2B business types (commodities, systems, solutions)
- Value pricing and value-based selling
- Organizational buying behavior
- Basics of B2B customer relationship management (e.g. key account management, reference customer management)
- Sales process (lead generation, sales presentations, customer-oriented selling, closing)
- Sales automation

Learning objectives

Students

- Are familiar with marketing and sales peculiarities and challenges in B2B environments
- Are able to identify different B2B business types and their marketing characteristics
- Are familiar with central theories of organizational buying behavior
- Are familiar with central objectives of Customer Relationship Management in B2B environments and are able to implement them with appropriate tools
- Are able to prioritize customers and calculate B2B Customer Lifetime Value
- Know how B2B sales presentations work and have also gained practical experience in this area
- Are able to determine value-based prices

Workload

The total workload for this course is approximately 135.0 hours.
Attendance time: 35.0 hours
Self-study: 100.0 hours

Organization

A detailed schedule will be announced.

Literature

8.25 Course: Bachelor's Thesis [T-WIWI-103067]

Responsible: Studiendekan des KIT-Studienganges

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101601 - Module Bachelor's Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>12</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
see module description

Prerequisites
see module description

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline:** 6 months
- **Maximum extension period:** 1 month
- **Correction period:** 6 weeks
8.26 Course: Basic Principles of Economic Policy [T-WIWI-103213]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2560280</td>
<td>2 SWS</td>
<td>Basic Principles of Economic Policy</td>
<td>Lecture / X</td>
<td>Ott</td>
</tr>
<tr>
<td>ST 2024 2560281</td>
<td>1 SWS</td>
<td>Exercises of Basic Principles of Economic Policy</td>
<td>Practice /</td>
<td>Scheidt, Zoroglu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7900079</td>
<td>Basic Principles of Economic Policy</td>
<td>Ott</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 7900106</td>
<td>Basic Principles of Economic Policy</td>
<td>Ott</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites
None

Recommendation
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2610012], and Economics II [2600014].
Annotation
Please note that the lecture will not be held in summer semester 2021. The exam is offered.

Description:
Theory of general economic policy and discussion of current economic policy topics:

- Goals of economic policy,
- Instruments and institutions of economic policy,
- Triad of regional, national and European economic policies,
- special fields of economic policy, in particular growth, employment, provision of public infrastructure and climate policy.

Learning objectives:
Students learn:

- To apply basic concepts of micro- and macroeconomic theories to economic policy issues.
- to develop arguments on how state intervention in the market can be legitimized from a welfare economic perspective
- to derive theory-based policy recommendations.

Learning content:

- Market interventions: microeconomic perspective
- Market interventions: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Economic policy makers: Political-economic aspects

Workload:

- Total effort at 4.5 LP: approx. 135 hours
- Presence time: approx. 30 hours
- Self-study: approx. 105 hours

Media:
See course announcement

References:
See course announcement

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Basic Principles of Economic Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2560280, SS 2024, 2 SWS, Language: German, Open in study portal</td>
</tr>
<tr>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>
Content
The lecture deals with theories of general economic policy and discussion of current economic policy topics:

- Goals of economic policy,
- Instruments and institutions of economic policy,
- Triad of regional, national and European economic policies,
- special fields of economic policy, in particular growth, employment, provision of public infrastructure and climate policy.

Learning objectives:
Students shall be given the ability to

- apply basic concepts of micro- and macroeconomic theories to economic policy issues
- develop arguments on how state intervention in the market can be legitimized from a welfare economic perspective
- derive theory-based policy recommendations

Recommendations:
Basic micro- and macroeconomic knowledge is required, especially as taught in the courses Economics I [2610012] and Economics II [2600014].

Workload:
Total effort at 4.5 LP is approx. 135 hours and consists of:

- Presence time: approx. 30 hours
- Self-study: approx. 105 hours

Assessment:
The examination takes place in the form of a written examination (60min) (according to §4(2), 1 SPO). The examination is offered every semester and can be repeated at any regular examination date.

Organizational issues
Zugehörige Veranstaltung: Übungen zur Einführung in die Wirtschaftspolitik [2560281]

Literature
- Foliensatz zur Vorlesung
- Übungsaufgaben

Exercises of Basic Principles of Economic Policy
2560281, SS 2024, 1 SWS, Language: German, Open in study portal
8.27 Course: Basics of German Company Tax Law and Tax Planning [T-WIWI-108711]

Responsible: Dr. Gerd Gutekunst
Prof. Dr. Berthold Wigger

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101403 - Public Finance
M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I

Type
Written examination

Credits
4.5

Grading scale
Grade to a third

Recurrence
Each winter term

Version
2

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2560134</th>
<th>Basics of German Company Tax Law and Tax Planning</th>
<th>3 SWS</th>
<th>Lecture / 🗣️</th>
<th>Wigger, Gutekunst</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>790unbe</th>
<th>Basics of German Company Tax Law and Tax Planning</th>
<th>Wigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>790unbe</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5 h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Recommendation

Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course “Öffentliche Einnahmen” beforehand.

Below you will find excerpts from events related to this course:

Basics of German Company Tax Law and Tax Planning

| 2560134, WS 23/24, 3 SWS, Language: German, Open in study portal |
| Lecture (V) On-Site |

Content

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.
8.28 Course: Basics of Technical Logistics I [T-MACH-109919]

Responsible: Dr.-Ing. Martin Mittwollen
Dr.-Ing. Jan Oellerich

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101279 - Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2117095</td>
<td>Basics of Technical Logistics I</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Mittwollen, Oellerich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-109001</td>
<td>Basics of Technical Logistics I</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge of the basics of technical mechanics preconditioned.

Below you will find excerpts from events related to this course:

Content

- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

Students are able to:

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines
- Model real machines applying knowledge from lessons and calculate their dimensions.
Organizational issues
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder mündlichen Prüfung (nach §4 (2), 1 bzw. 2SPO). The assessment consists of a written or oral exam according to Section 4 (2), 1 or 2 of the examination regulation.
Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt. Basics knowledge of technical mechanics is preconditioned.
Ergänzungsblätter, Präsentationen, Tafel. Supplementary sheets, presentations, blackboard.

Präsenz: 48Std
Nacharbeit: 132Std

presence: 48h
rework: 132h

Literature
Empfehlungen in der Vorlesung / Recommendations during lessons
8.29 Course: Basics of Technical Logistics II [T-MACH-109920]

Type
- Written examination

Credits
- 6

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Date</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Basics of Technical Logistics II</td>
<td>2117098</td>
<td>Lecture / Practice (/)</td>
<td>Oellerich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Date</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-109902</td>
<td>Basics of Technical Logistics II</td>
<td>Hochstein, Mittwollen, Oellerich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-109920</td>
<td>Basics of Technical Logistics II</td>
<td>Hochstein, Mittwollen, Oellerich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
- none

Recommendation
Knowledge of the basics of technical mechanics and out of "Basic of Technical Logistics I" (T-MACH-109919) preconditioned.
8.30 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II
[T-MACH-100967]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Lecture / [:inline]</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2142883</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>2</td>
<td>Lecture / [inline]</td>
<td>Guber, Ahrens</td>
</tr>
</tbody>
</table>

Exams

Events	Code	Type			
----------	--------	---			
WT 23/24	76-T-MACH-100967	BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II			
ST 2024	76-T-MACH-100967	BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II			

Competence Certificate

Written exam (75 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II

2142883, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Content

Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
LabCD, Protein Cristallisation
Microarrys
Tissue Engineering
Cell Chip Systems
Drug Delivery Systems
Micro reaction technology
Microfluidic Cells for FTIR-Spectroscopy
Microsystem Technology for Anesthesia, Intensive Care and Infusion
Analysis Systems of Person’s Breath
Neurobionics and Neuroprosthesis
Nano Surgery

Organizational issues

Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.
Prüfung:

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
8.31 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [T-MACH-100968]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2142879</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Guber, Ahrens</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>Guber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>Guber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (75 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III
2142879, SS 2024, 2 SWS, Language: German, Open in study portal

Content

Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Organizational issues

Zu jedem Vorlesungstermin werden via ILIAS die jeweiligen Folien im PDF-Format zur Verfügung gestellt.

Prüfung:

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
8.32 Course: Boosting of Combustion Engines [T-MACH-105649]

Responsible: Dr.-Ing. Johannes Kech
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2134153</td>
<td>Boosting of Combustion Engines</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Kech</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2134153</td>
<td>Boosting of Combustion Engines and Fuel Cells</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Kech</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105649</td>
<td>Boosting of Combustion Engines</td>
<td></td>
<td></td>
<td>Koch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, 20 min

Prerequisites
one
8.33 Course: Brand Management [T-WIWI-112156]

Responsible: Prof. Dr. Ann-Kristin Kupfer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101424 - Foundations of Marketing

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Examination of another type</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Examination of another type</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Examination of another type</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams
| WT 23/24 | 2572191 | Brand Management Exercise | 1 SWS | Practice / On-Site | Mitarbeiter |
| ST 2024 | 7900047 | Brand Management | Kupfer |

Competence Certificate
The assessment of success will be done by the preparation and presentation of a case study as well as a written exam. Further details will be announced during the lecture.

Prerequisites
None

Recommendation
Students are highly encouraged to actively participate in class.

Below you will find excerpts from events related to this course:

Brand Management
2572190, WS 23/24, 2 SWS, Language: English, [Open in study portal]

Content
Students learn the theoretical foundations of brand management and its most important concepts. They learn both about the importance of brands for consumers as well as the importance of brands for firms. Special emphasis will be given to the development of brand strategies. Furthermore, students will learn how to evaluate and apply brand instruments. A tutorial offers the opportunity to apply the key learnings of the lecture using case studies.

The learning objectives are as follows:

- Getting to know the theoretical foundations of brand management
- Evaluating strategic branding options (e.g., relating to the development of the core of the brand and the brand architecture) and operative brand instruments (e.g., relating to the brand name and logo)
- Fostering critical and analytical thinking skills and the application of knowledge to marketing problems
- Improving English skills

Total time required for 4.5 credit points: approx. 135 hours
Attendance time: 30 hours
Self-study: 105 hours
8.34 Course: Business Strategies of Banks [T-WIWI-102626]

Responsible: Prof. Dr. Wolfgang Müller

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

Type	**Credits**	**Grading scale**	**Recurrence**	**Version**
Written examination | 3 | Grade to a third | see Annotations | 1

Competence Certificate
The lecture will be offered for the last time in the winter semester 2021/22. The exam will take place for the last time in the summer semester 2022 (only for repeaters).

Prerequisites
None

Recommendation
None

Annotation
The lecture will be offered for the last time in the winter semester 2021/22.
8.35 Course: CAD-NX Training Course [T-MACH-102187]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2024</td>
<td>CAD-NX training course</td>
<td>2 SWS</td>
<td>Practical course / Blended (On-Site/Online)</td>
<td>Ovtcharova, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102187</td>
<td>CAD-NX Training Course</td>
<td></td>
<td>Ovtcharova</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Practical verification as academic achievement by working on a design task on the CAD computer, duration: 60 min.

Prerequisites
None

Recommendation
Dealing with technical drawings is required.

Annotation
For the practical course compulsory attendance exists.

Below you will find excerpts from events related to this course:

CAD-NX training course
2123357, WS 23/24, 2 SWS, Language: German, Open in study portal

Practical course (P)
Blended (On-Site/Online)

Content

- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Students are able to:

- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

Organizational issues
Das Praktikum kann entweder vorlesungsbegleitend oder als einwöchige Blockveranstaltung in der vorlesungsfreien Zeit absolviert werden. Weitere Informationen siehe ILIAS.

Literature
Praktikumsskript
Content

- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Students are able to:

- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

Organizational issues

Informationen zum Ablauf des Praktikums werden in einer Auftaktveranstaltung veröffentlicht. Hinweise hierzu siehe ILIAS.

Literature

Praktikumsskript
8.36 Course: Civil Law for Beginners [T-INFO-103339]

Responsible: Dr. Yvonne Matz
Organisation: KIT Department of Informatics
Part of: M-INFO-105084 - Public and Civil Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / 🗣</td>
<td>4 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.37 Course: Climatology [T-PHYS-101092]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>4051111</th>
<th>Klimatologie</th>
<th>3 SWS</th>
<th>Lecture / ‍</th>
<th>Ginete Werner Pinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>4051112</td>
<td>Übungen zu Klimatologie</td>
<td>1 SWS</td>
<td>Practice / ‍</td>
<td>Mömken, Ludwig, Stadelmaier, Ginete Werner Pinto</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>7800005</th>
<th>Climatology</th>
<th>Ginete Werner Pinto</th>
</tr>
</thead>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Prerequisites

none
8.38 Course: CO2-Neutral Combustion Engines and their Fuels I [T-MACH-111550]

Responsible: Prof. Dr. Thomas Koch

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101275 - Combustion Engines I

Type: Oral examination
Credits: 5
Grading scale: Grade to a third
Recurrence: Each winter term
Expansion: 1 terms
Version: 1

Events

| WT 23/24 | 2133113 | CO2-neutral combustion engines and their fuels I | 4 SWS | Lecture / Practice (/) | Koch |

Exams

| WT 23/24 | 76-T-MACH-102194 | CO2-neutral combustion engines and their fuels I | Kubach, Koch |
| ST 2024 | 76-T-MACH-102194 | CO2-neutral combustion engines and their fuels I | Koch, Kubach |

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

CO2-neutral combustion engines and their fuels I
2133113, WS 23/24, 4 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
On-Site

Content

Introduction, Presentation of IFKM
Working Principle
Characteristic Parameters
Engine Parts
Drive Train
Fuels
Gasoline Engines
Diesel Engines
Hydrogen Engines
Exhaust Gas Emissions

Organizational issues

Übungstermine Donnerstags nach Bekanntgabe in der Vorlesung
Course: CO2-Neutral Combustion Engines and their Fuels II [T-MACH-111560]

Responsible: Prof. Dr. Thomas Koch
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2134151</td>
<td>CO2-neutral combustion engines and their fuels II</td>
<td>3 SWS</td>
<td>Lecture / Practice (VU)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-104609</td>
<td>Combustion Engines, Hydrogen Engines and CO2 neutral Fuels II</td>
<td>Kubach, Koch</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online
🧩 Blended (On-Site/Online)
🗣 On-Site
🗙 Cancelled

Competence Certificate

oral examination, duration: 25 minutes, no auxiliary means

Prerequisites

none

Recommendation

Fundamentals of Combustion Engines II helpful

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Language: German, Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2134151, SS 2024</td>
<td>CO2-neutral combustion engines and their fuels II</td>
<td>On-Site</td>
</tr>
</tbody>
</table>
Course: Competition in Networks [T-WIWI-100005]

Responsible
Prof. Dr. Kay Mitusch

Organisation
KIT Department of Economics and Management

Part of
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101668 - Economic Policy I

Type
Written examination

Credits
4.5

Grading scale
Grade to a third

Recurrence
Each winter term

Version
3

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Coordinators</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2561204</td>
<td>Competition in Networks</td>
<td>2</td>
<td>Lecture / 🔐</td>
<td>Mitusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2561205</td>
<td>Übung zu Wettbewerb in Netzen</td>
<td>1</td>
<td>Practice / 🔐</td>
<td>Wisotzky, Mitusch, Corbo</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Coordinators</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900221</td>
<td>Competition in Networks</td>
<td>Lecture (V)</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Competence Certificate
Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Prerequisites
None.

Recommendation
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Below you will find excerpts from events related to this course:

V Competition in Networks
2561204, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
Network or infrastructure industries like telecommunication, transport, and utilities form the backbone of modern economies. The lecture provides an overview of the economic characteristics of network industries. The planning of networks is complicated by the multitude of aspects involved (like spatial differentiation and the like). The interactions of different companies - competition or cooperation or both - are characterized by complex interdependencies within the networks: network effects, economies of scale, effects of vertical integration, switching costs, standardization, compatibility etc. appear increasingly in these sectors and even tend to appear in combination. Additionally, government interventions can often be observed, partly driven by the aims of competition policy and partly driven by the aims industrial policy. All these issues are brought up, analyzed formally (in part) and illustrated by several examples in the lecture.

Literature
Literatur und Skripte werden in der Veranstaltung angegeben.
8.41 Course: Complex Analysis and Integral Transformations [T-ETIT-109285]

Responsible: Dr.-Ing. Mathias Kluwe
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-101156 - Control Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2303190</td>
<td>Complex analysis and integral transformations</td>
<td>1 SWS</td>
<td>Lecture / 🗣</td>
<td>Kluwe</td>
<td></td>
</tr>
<tr>
<td>ST 2024 2303191</td>
<td>Übungen zu 2303190 Komplexe Analysis und Integraltransformationen</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Kluwe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7303190</td>
<td>Complex Analysis and Integral Transformations</td>
<td></td>
<td>Kluwe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 7303190</td>
<td>Complex Analysis and Integral Transformations</td>
<td></td>
<td>Kluwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
198
8.42 Course: Computational Macroeconomics [T-WIWI-112723]

Responsible: Prof. Dr. Johannes Brumm
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-106472 - Advanced Macroeconomics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2500162 | Computational Macroeconomics | 2 SWS | Lecture / 🗣 | Krause, Brumm |
| ST 2024 | 2500164 | Übung zu Computational Macroeconomics | 1 SWS | Practice / 🗣 | Hußmann |

Legend: 🗣 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment takes place in the form of a written 60 min. examination during the lecture-free period of the semester. The examination is offered every semester and can be repeated at any regular examination date.

Prerequisites
None

Annotation
New lecture starting summer semester 2024.
8.43 Course: Computational Risk and Asset Management [T-WIWI-102878]

Responsible: Prof. Dr. Maxim Ulrich

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103120 - Financial Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>5</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination takes the form of an alternative exam assessment. The alternative exam assessment consists of a Python-based "Takehome Exam". At the end of the third week of January, the student is given a "Takehome Exam" which he processes and sends back independently within 4 hours using Python. Precise instructions will be announced at the beginning of the course. The alternative exam assessment can be repeated a maximum of once. A timely repeat option takes place at the end of the third week in March of the same year. More detailed instructions will be given at the beginning of the course.

Prerequisites
None.

Recommendation
Basic knowledge of capital markt theory.
8.44 Course: Constitution and Properties of Wearresistant Materials [T-MACH-102141]

Responsible: Prof. Sven Ulrich
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2194643</td>
<td>Constitution and Properties of Wear resistant materials</td>
<td>Lecture / 🗣 Ulrich</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102141</td>
<td>Constitution and Properties of Wearresistant Materials</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral examination (about 30 min)

no tools or reference materials

Prerequisites

none

Below you will find excerpts from events related to this course:

Constitution and Properties of Wear resistant materials

2194643, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site
Content
The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Teaching Content:
introduction
materials and wear
unalloyed and alloyed tool steels
high speed steels
stellites and hard alloys
hard materials
hard metals
ceramic tool materials
superhard materials
new developments
regular attendance: 22 hours
self-study: 98 hours
Basic understanding of constitution of wear-resistant materials, of the relations between constitution, properties and performance, of principles of increasing of hardness and toughness of materials as well as of the characteristics of the various groups of wear-resistant materials.
Recommendations: none

Organizational issues
Die Blockveranstaltung findet in folgendem Zeitraum statt:
15.04.-17.04.2024: jeweils von 8:00-16:00 Uhr;
Ort: KIT-CN, Geb. 681, Raum 214
Anmeldung verbindlich bis zum 13.04.2024 unter sven.ulrich@kit.edu.
Nach der Anmeldung wird Ihnen im Falle einer Online-Veranstaltung der Link zur Vorlesung per E-Mail am 14.04.2024 mitgeteilt.

Literature
Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995
Kopien der Abbildungen und Tabellen werden verteilt; Copies with figures and tables will be distributed
8.45 Course: Construction Technology [T-BGU-101691]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-101004 - Fundamentals of Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 6200410 Construction Technology</td>
<td>3 SWS</td>
<td>Lecture/🧩</td>
<td>Gentes, Haghsheno, Schneider</td>
<td></td>
</tr>
<tr>
<td>ST 2024 6200411 Exercises to Construction Technology</td>
<td>1 SWS</td>
<td>Practice/🧩</td>
<td>Gentes, Haghsheno, Schneider, Waleczko</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 8230101691 Construction Technology</td>
<td></td>
<td>Haghsheno, Gentes, Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
written exam with 90 minutes

Prerequisites
None

Recommendation
None

Annotation
None
8.46 Course: Consumer Behavior [T-WIWI-106569]

Responsible: Prof. Dr. Benjamin Scheibehenne
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101424 - Foundations of Marketing
- M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>3 SWS</td>
<td>Consumer Behavior</td>
<td>Lecture, Scheibehenne</td>
</tr>
<tr>
<td>ST 2024</td>
<td>1 SWS</td>
<td>Übung zu Consumer Behavior</td>
<td>Practice, Liu, Scheibehenne</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>90 minutes</td>
<td>Consumer Behavior</td>
<td>Scheibehenne</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of success takes the form of a presentation (weighting 20%) as part of the exercise and a written examination (90 minutes, weighting 80%).

Prerequisites

None.

Annotation

For further information, please contact the research group Marketing and Sales (http://marketing.iism.kit.edu/).

Below you will find excerpts from events related to this course:

| V | Consumer Behavior
| 2572174, SS 2024, 3 SWS, Language: English, Open in study portal | Lecture (V) |
Content

Important information

1. WIWI portal registration is required for the course. The registration will be open in March. Seats are limited to 30;

2. Übung associated with this course is MANDATORY: Students will be asked to do presentations in groups of 3 (introduce and discuss academic papers assigned by the lecturer). This will take place over one day (as a blocked event) during the semester (When and where will be decided at the beginning of the semester). This task will count towards 20% of the final grades of the "Consumer Behavior" class. There will be no weekly or biweekly Übung besides this event.

Goal

The goal of the class is to gain a better understanding of the situational, biological, cognitive, and evolutionary factors that drive consumer behavior. We will address these questions from an interdisciplinary perspective, including relevant theories and empirical research findings from Psychology, Marketing, Cognitive Science, Biology, and Economics.

Description

Consumer decisions are ubiquitous in daily life and they can have long-ranging and important consequences for individual (financial) well-being and health but also for societies and the planet as a whole. To help people making better choices it is important to understand the factors that influence their behavior. Towards this goal, we will explore how consumer behavior is shaped by social influences, situational and cognitive constraints, as well as by emotions, motivations, evolutionary forces, neuronal processes, and individual differences. Across all topics covered in class, we will engage with basic theoretical work as well as with groundbreaking empirical research and current scientific debates.

The lecture will be held in English.

Grading

Grading is based on two parts. An oral presentation that takes place in the Übung will count towards 20% of the grade. A written exam at the last day of class will make the rest 80%. The exam will cover the content of the lecture and the literature listed in the required reading list that will be made available to enrolled students on the first day of class. The exam questions will be in English. You are allowed to bring a language dictionary into the exam but you are not allowed to bring notes.

Workload

The total workload for this course is approximately 135 hours.

- Presence time: 30 hours
- Preparation and wrap-up of the course: 45 hours
- Exam and exam preparation: 60 hours

Organizational issues

Wiwi portal sign up required

Literature

Will be made available to enrolled students on the first day of class.
8.47 Course: Control of Mobile Machines [T-MACH-111821]

Responsible: Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101266 - Automotive Engineering
- M-MACH-101267 - Mobile Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
A prerequisite for participation in the examination is the preparation of a semester report. The preexamination with the code T-MACH-111820 must be passed.
8.48 Course: Control of Mobile Machines – Prerequisites [T-MACH-111820]

Responsible: Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101266 - Automotive Engineering
- M-MACH-101267 - Mobile Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Preparation of a report on the completion of the semester task

Prerequisites
none
8.49 Course: Control Technology [T-MACH-105185]

Responsible: Hon.-Prof. Dr. Christoph Gönnheimer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
</table>
| ST 2024 2150683 Control Technology 2 SWS Lecture / Gönnheimer
| Exams | | | | |
| WT 23/24 76-T-MACH-105185 Control Technology Gönnheimer
| ST 2024 76-T-MACH-105185 Control Technology Gönnheimer

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Written Exam (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Control Technology
2150683, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site
Content
The lecture control technology gives an integral overview of available control components within the field of industrial production systems.

The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states.

The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems.

The lecture is very practice-oriented and illustrated with numerous examples from different branches.

The following topics will be covered:

- Signal processing
- Control peripherals
- Programmable logic controls
- Numerical controls
- Controls for industrial robots
- Distributed control systems
- Field bus
- Trends in the area of control technology

Learning Outcomes:
The students...

- are able to name the electrical controls which occur in the industrial environment and explain their function.
- can explain fundamental methods of signal processing. This involves in particular several coding methods, error protection methods and analog to digital conversion.
- are able to choose and to dimension control components, including sensors and actors, for an industrial application, particularly in the field of plant engineering and machine tools. Thereby, they can consider both, technical and economical issues.
- can describe the approach for projecting and writing software programs for a programmable logic control named Simatic S7 from Siemens. Thereby they can name several programming languages of the IEC 1131.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Media:
Skrift zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Conveying Technology and Logistics [T-MACH-102135]

Responsible: Prof. Dr.-Ing. Kai Furmans
Paolo Pagani

Organisation: KIT Department of Mechanical Engineering

Part of: M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2119100 | Fördertechnik und Logistiksysteme | Seminar / On-Site | Furmans |
| ST 2024 | 2119100 | Fördertechnik und Logistiksysteme | Seminar / On-Site | Furmans, Padhy |

Exams

| WT 23/24 | 76-T-MACH-102135 | Conveying Technology and Logistics | Seminar (S) | Furmans |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
alternative test achievement (graded):

- written elaboration (workload of at least 80 h)
- oral presentation (approx. 30 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Fördertechnik und Logistiksysteme
2119100, WS 23/24, SWS, Language: German/English, [Open in study portal]

Content
The goal of the seminar is to deal with different topics related to the materials handling and logistics. Depending on the topic, the students can work on the either alone or in a group. At the end the results are presented and discussed with a final presentation. To prepare the work for the seminar an introductory event is scheduled at the beginning.

Organizational issues
Weiteres siehe Homepage

Fördertechnik und Logistiksysteme
2119100, SS 2024, SWS, Language: German/English, [Open in study portal]

Content
The goal of the seminar is to deal with different topics related to the materials handling and logistics. Depending on the topic, the students can work on the either alone or in a group. At the end the results are presented and discussed with a final presentation. To prepare the work for the seminar an introductory event is scheduled at the beginning.

Organizational issues
Ort: Gebäude 50.38, Raum 0.22, Termine siehe homepage
Course: Data-Driven Algorithms in Vehicle Technology [T-MACH-112126]

Responsible: Dr. Stefan Scheubner

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101265 - Vehicle Development
- M-MACH-101266 - Automotive Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113840</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>Scheubner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7600001</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>Scheubner</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7600001</td>
<td>Data-Driven Algorithms in Vehicle Technology</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>Scheubner</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate

- Written Examination

Duration: 90 minutes

Below you will find excerpts from events related to this course:

Data-Driven Algorithms in Vehicle Technology

2113840, WS 23/24, 2 SWS, Language: English, [Open in study portal](https://fast-web-01.fast.kit.edu/PasswoerterIlias/)

Lecture (V)

Blended (On-Site/Online)

Content

Course Syllabus: Data-Driven Algorithms in Vehicle Technology

Motivation for the Course: Nowadays, engineers often develop technical systems using a combination of hard- and software. This is true especially for modern passenger vehicle development. In a digitalized world, such developments are built on knowledge gained from relevant data sources, e.g. the vehicle sensors. Therefore, engineers in automobile technology need qualifications from data science to successfully create new functionalities in the cars. To prevent remaining purely theoretical, the algorithms in this course are explained using a real-world problem of "EV Routing". Students have the opportunity to test methods in Python with frequent exercises presented.

Goal of the Course: Students have a basic understanding of data-driven algorithms such as Markov Models, Machine Learning or Monte-Carlo Methods. The approach for building data-driven models in automobile technology are known to students and they are able to test algorithms in the programming language "Python". Furthermore, students have learnt how to analyse the algorithm performance.

Content:

1. Introduction to function development as well as the prerequisites for the course (e.g. Fundamentals for running Python code)
2. Fundamentals for EV Routing and relevant data sources
3. Parameter estimation and state classification algorithms to determine the current situation of the vehicle
4. Learning methods for driver behaviour
5. Forecast algorithms to predict future energy consumption of an electric vehicle

Organizational issues

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIlias/

Die erste VL am 24.10. um 14:00 Uhr findet in Präsenz am Campus Ost, Geb. 70.04, Raum 219 statt.
8 COURSES

Course: Decision Theory [T-WIWI-102792]

8.52 Course: Decision Theory [T-WIWI-102792]

Responsible:	Prof. Dr. Karl-Martin Ehrhart
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101499 - Applied Microeconomics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2520365</td>
</tr>
<tr>
<td>ST 2024 2520366</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7900159</td>
</tr>
<tr>
<td>ST 2024 7900254</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins.
The exam is offered each semester.

Prerequisites
None

Recommendation
Knowledge in mathematics and statistics is required.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Decision Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520365, SS 2024, 2 SWS, Language: German, Open in study portal</td>
</tr>
</tbody>
</table>

Literature
- Ehrhart, K.-M. und S.K. Berninghaus (2012): Skript zur Vorlesung Entscheidungstheorie, KIT.
8.53 Course: Derivatives [T-WIWI-102643]

Responsible: Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101402 - eFinance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Codes</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2530550</td>
<td>Derivatives</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>German</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2530551</td>
<td>Übung zu Derivate</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>German</td>
<td>Dinger, Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Codes</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900051</td>
<td>Derivatives</td>
<td>1</td>
<td>Lecture (V)</td>
<td>German</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination or as an open-book examination (alternative exam assessment).

A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Literature

Weiterführende Literatur:

8.54 Course: Design and Development of Mobile Machines [T-MACH-105311]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101267 - Mobile Machines

Type
- Oral examination

Credits
- 4

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

A registration is mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

The course will be replenished by interesting lectures of professionals from leading hydraulic companies.

Prerequisites

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108887 must have been passed.

Recommendation

Knowledge in Fluid Power Systems (LV 2114093)

Annotation

After completion of the lecture, students can:

- design working and travel drive train hydraulics of mobile machines and can derive characteristic key factors.
- choose and apply suitable state of the art designing methods successfully
- analyse a mobile machines and break its structure down from a complex system to subsystems with reduced complexity
- identify and describe interactions and links between subsystems of a mobile machine
- present and document solutions of a technical problem according to R&D standards

The number of participants is limited.

Content:

The working scenario of a mobile machine depends strongly on the machine itself. Highly specialised machines, e.g. pavers are also as common as universal machines with a wide range of applications, e.g. hydraulic excavators. In general, all mobile machines are required to do their intended work in an optimal way and satisfy various criteria at the same time. This makes designing mobile machines to a great and interesting challenge. Nevertheless, usually key factors can be derived for every mobile machine, which affect all other machine parameters. During this lecture, those key factors and designing mobile machines accordingly will be addressed. To do so, an exemplary mobile machine will be discussed and designed in the lecture as a semester project.

Literature:

See german recommendations

Below you will find excerpts from events related to this course:

Design and Development of Mobile Machines

2113079, WS 23/24, 2 SWS, Language: German, Open in study portal

[Lecture (V)]
- On-Site
Content
Wheel loaders and excavators are highly specialized mobile machines. Their function is to detach, pick up and deposit materials near by. Significant size for dimensioning of the machines is the content of their standard shovel. In this lecture the main steps in dimensioning a wheel loader or excavator are being thought. This includes among others:

- Defining the size and dimensions,
- the dimensioning of the electric drive train,
- the dimensioning of the primary energy supply,
- Determining the kinematics of the equipment,
- the dimension of the working hydraulics and
- Calculations of strength

The entire design process of these machines is strongly influenced by the use of standards and guidelines (ISO/DIN-EN). Even this aspect is dealt with.

The lecture is based on the knowledge from the fields of mechanics, strength of materials, machine elements, propulsion and fluid technique. The lecture requires active participation and continued collaboration.

Recommendations:
Knowledge in Fluid Technology (SoSe, LV 21093)

- regular attendance: 21 hours
- self-study: 99 hours

Literature
Keine.
8.55 Course: Design and Development of Mobile Machines - Advance [T-MACH-108887]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Jan Siebert

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101267 - Mobile Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 76-T-MACH-108887</td>
<td>Design and Development of Mobile Machines - Advance</td>
<td>Geimer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Preparation of semester report

Prerequisites

none
8.56 Course: Development Methods of Technical Systems [T-MACH-111283]

Responsible: Dipl.-Ing. Thomas Maier
Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2121002</td>
<td>Development methods of technical systems</td>
<td>4 SWS</td>
<td>Project (P / 🗣)</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2121002</td>
<td>Development methods of technical systems</td>
<td>4 SWS</td>
<td>Project (P / 🗣)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-111283</td>
<td>Development Methods of Technical Systems</td>
<td></td>
<td>Meyer, Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate
Graded examination of other type weighted 50% project documentation and 50% colloquium.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Development methods of technical systems
2121002, WS 23/24, 4 SWS, Language: German/English, [Open in study portal](#)

Content
Requirements, SysML, Modelica, FEM high performance computing, process modeling, VR/AR

Students can exemplarily:
- Collect requirements for large technical systems (e.g.: Helmholtz large-scale device KATRIN).
- Describe physical systems across domains with the modeling language Modelica and simulate the systems behavior.
- Generate simple FE meshes for simulations of structural mechanics.
- Perform general FEM analyses on mainframe computers and prepare and explain simulation results.
- As a team present the learned skills and document them continuously.

Development methods of technical systems
2121002, SS 2024, 4 SWS, Language: German/English, [Open in study portal](#)

Content
Requirements, SysML, Modelica, FEM high performance computing, process modeling, VR/AR

Students can exemplarily:
- Collect requirements for large technical systems (e.g.: Helmholtz large-scale device KATRIN).
- Describe physical systems across domains with the modeling language Modelica and simulate the systems behavior.
- Generate simple FE meshes for simulations of structural mechanics.
- Perform general FEM analyses on mainframe computers and prepare and explain simulation results.
- As a team present the learned skills and document them continuously.
8.57 Course: Development of Hybrid Drivetrains [T-MACH-110817]

Responsible: Prof. Dr. Thomas Koch
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2134155</th>
<th>Development of Hybrid Powertrains</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Koch, Doppelbauer</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-110817</th>
<th>Development of hybrid drivetrains</th>
<th>Koch</th>
</tr>
</thead>
</table>

Competence Certificate
written exam, 1 hour

Prerequisites
None

Below you will find excerpts from events related to this course:

Development of Hybrid Powertrains
2134155, SS 2024, 2 SWS, Language: German, Open in study portal

Content

1. Introduction and Goal
2. Alternative Powertrains
3. Fundamentals of Hybrid Powertrains
4. Fundamentals of Electric Components of Hybrid Powertrains
5. Interactions in Hybrid Powertrain Development
6. Overall System Optimization
8.58 Course: Digital Democracy [T-WIWI-113160]

Responsible: Jonas Fegert

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101434 - eBusiness and Service Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>00052</td>
<td>Digital Democracy</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
<td>Fegert</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>00053</td>
<td>Übung zur Digital Democracy</td>
<td>1 SWS</td>
<td>Practice / 📚</td>
<td>Fegert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>00059</td>
<td>Digital Democracy</td>
<td></td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🌐 Online; 📚 Blended (On-Site/Online); 🗺️ On-Site; ❌ Canceled

Competence Certificate

Alternative exam assessment. The examination consists of two parts (presentation and oral exam). Details on the design of the exam will be announced at the beginning of the course.

Annotation

Limited to 25 students. Application (cover letter) via the Wiwi-portal.

Below you will find excerpts from events related to this course:

Digital Democracy

00052, WS 23/24, 2 SWS, Language: English, [Open in study portal]

Lecture (V)

Blended (On-Site/Online)

Content

The “Digital Democracy” Lecture deals with opportunities and challenges of democracy and participation in a digitalized world. Social networks and other platforms have become a central place for human interaction.

These technologies open up many possibilities to connect people, promote societal discourse, and organize social movements. On the other hand, they are also used to undermine democracy by extremist forces.

One example is the spread of disinformation through social media, which can undermine trust in democratic institutions and exacerbate divisions in society. Big tech actors pursue their own economically driven interests, some of which run counter to societal ones.

So to what extent can Internet platforms help strengthen social discourse? And what measures can be taken to promote the quality and diversity of discourse in the digital world? What role do big tech players play in digital democracy and how can their interests be reconciled with democratic principles? These and many more questions will be explored in the lecture. The lecture introduces theoretical foundations and evidence-based research on digital democracy. It will address the following questions: What characterizes deliberative democracies, how do democracies change, and what can damage them? How does social polarization emerge and what drives it - off- and online. Accordingly, different platform types and phenomena of disinformation, such as clickbait, will be presented. The last part of the lecture series will deal with the search for approaches and alternatives to these problems.

Organizational issues

Beschränkung auf 25 Plätze mit Bewerbung per kurzem Motivationsschreiben (ab Anfang/Mitte September über das Wiki-Portal)
8.59 Course: Digital Markets and Market Design [T-WIWI-112228]

Responsible: Prof. Dr. Adrian Hillenbrand
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101499 - Applied Microeconomics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2500035</td>
<td>Digital Markets and Market Design</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>4,5</td>
<td>Hillenbrand</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2500036</td>
<td>Digital Markets and Market Design</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
<td>4,5</td>
<td>Hillenbrand</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900016</td>
<td>Digital Markets and Market Design</td>
<td>1 SWS</td>
<td></td>
<td>Hillenbrand</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900026</td>
<td>Digital Markets and Market Design</td>
<td>1 SWS</td>
<td></td>
<td>Hillenbrand</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⬆ Blended (On-Site/Online), 👤 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Annotation
The lecture will be held in English.

Below you will find excerpts from events related to this course:

Content
Online Markets determine our everyday lives. At the same time rapid technological advancements quickly change the landscape of online markets posing challenges for market design and consumer protection. In this course we apply theoretical economic models in the area of digital markets in order to make sense of current developments. Topics include consumer search, algorithmic pricing, recommender systems and steering, price discrimination and matching markets. We also discuss the potential effects of current policies like the Digital Markets Act and Digital Services Act on market outcomes.

Content
Exercise Session for the course "Digital Markets and Market Design"

Organizational issues
Jede zweite Woche eine Übung
The world has been moving towards "service-led" economies: In many developed countries, services already account for more than 70% of the gross domestic product. In order to design, engineer, and manage services, traditional "goods-oriented" business models are often inappropriate. At the same time, the rapid development of information and communication technology (ICT) pushes "servitization" and the economic importance of digital services and, therefore, drives competition: Increased interaction and individualization options open up new dimensions of "value co-creation" between providers and customers; dynamic and scalable service value networks replace static value chains; services can instantly be delivered anywhere across the globe.

Building on a systematic categorization of different types of services and on the general notion of "value co-creation", we cover concepts and foundations for engineering and managing ICT-based digital services, allowing for further specialization in other KSRI/IISM courses at the Master level. Topics in this course include an introduction to services and human-centered design, as well as an introduction to AI-based services, smart services & IoT, and quantum services. Additionally, essential concepts for the design of AI-based services are covered, such as transparency, fairness, and human-AI complementarity in services. Finally, the lecture provides an outlook on digital services in the context of sustainability. Besides those contents, the lecture entails case studies, hands-on exercises, and guest lectures that will illustrate the relevance of digital services in today's world.
Literature

8 COURSES

Course: Digitalization from Production to the Customer in the Optical Industry [T-MACH-110176]

8.61 Course: Digitalization from Production to the Customer in the Optical Industry [T-MACH-110176]

Responsible: Dr.-Ing. Marc Wawerla
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2149701 | Digitalization from Production to the Customer in the Optical Industry | 2 SWS | Lecture / 🗣 | Wawerla |

Exams

| WT 23/24 | 76-T-MACH-110176 | Digitalization from Production to the Customer in the Optical Industry | Wawerla |

Competence Certificate
Alternative test achievement (graded):
- Written processing of a case study (weighting 50%) and
- Presentation of the results (ca. 10 min.) followed by a colloquium (ca. 30 min.), (weighting 50%)

Prerequisites
none

Annotation
For organisational reasons, the number of participants for the course is limited. As a result, a selection process will take place. Further information for application can be found via: https://www.wbk.kit.edu/english/education.php.

Below you will find excerpts from events related to this course:

Digitalization from Production to the Customer in the Optical Industry
2149701, WS 23/24, 2 SWS, Language: English, Open in study portal

On-Site
Content
The lecture deals with Digitalization along the entire value chain end-to-end, with a focus on production and supply chain. Within this context, concepts, tools, methods, technologies and concrete applications in the industry are presented. Furthermore, the students get the opportunity to get first-hand insights into the digitalization journey of a German technology company.
Main topics of the lecture:
- Concepts and methods such as disruptive innovation and agile project management
- Overview on technologies at disposal
- Practical approaches in innovation
- Applications in industry
- Field trip to ZEISS

Learning Outcomes:
The students ...
- are capable to comment on the content covered by the lecture.
- are able to analyze and evaluate the suitability of digitalization technologies in the optical industry.
- are able to assess the applicability of methods such as disruptive innovation and agile project management.
- are able to appreciate the practical challenges to digitalization in industry.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues

For organisational reasons, the number of participants for the course is limited. As a result, a selection process will take place. Further information for application can be found via:
8.62 Course: Drive Train of Mobile Machines [T-MACH-105307]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Marco Wydra

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101267 - Mobile Machines

Type
- Oral examination

Credits
- 4

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113077</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>On-Site</td>
<td>1</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2113078</td>
<td>Practice</td>
<td>1 SWS</td>
<td>On-Site</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105307</td>
<td>Drive Train of Mobile Machines</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The final assessment will be an oral examination (20 min) taking place during the recess period. The examination will be offered in every semester and can be repeated at any regular examination date.

Prerequisites
none

Recommendation
- General principles of mechanics engineering
- Basic knowledge of hydraulics
- Interest in mobile machinery

Annotation
At the end of the lecture, participants can explain the structure and function of all discussed drive trains of mobile machines. They can analyze complex gearbox schematics and synthesize simple transmission functions using rough calculations.

Content:
In this course the different drive trains of mobile machinery will be discussed. The focus of this course is:

- mechanical gears
- torque converter
- hydrostatic drives
- power split drives
- electrical drives
- hybrid drives
- axles
- terra mechanics

Media: projector presentation

Literature: Download of lecture slides from ILIAS. Further literature recommendations during lectures.

Below you will find excerpts from events related to this course:

Drive Train of Mobile Machines
2113077, WS 23/24, 2 SWS, Language: German, Open in study portal
Content
In this course will be discussed the different drive train of mobile machineries. The focus of this course is:
- improve knowledge of fundamentals
- mechanical gears
- torque converter
- hydrostatic drives
- continuous variable transmission
- electrical drives
- hybrid drives
- axles
- terra mechanic

Recommendations:
- general basics of mechanical engineering
- basic knowledge in hydraulics
- interest in mobile machines
- regular attendance: 21 hours
- self-study: 89 hours

Literature
Skriptum zur Vorlesung downloadbar über ILIAS
8.63 Course: Economics and Behavior [T-WIWI-102892]

Responsibility: Prof. Dr. Nora Szech
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101499 - Applied Microeconomics
M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2560137</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Lecture / Online</td>
<td>Rau, Zhao</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2560138</td>
<td>1</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Practice / Online</td>
<td>Rau, Zhao</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 7900134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam Economics and Behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rau, Zhao</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 7900154</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics and Behavior (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Annotation
The lecture will be held in English.

Below you will find excerpts from events related to this course:

Content
The course covers topics from behavioral economics with regard to contents and methods. In addition, the students gain insight into the design of economic experiments. Furthermore, the students will become acquainted with reading and critically evaluating current research papers in the field of behavioral economics.

The students
- gain insight into fundamental topics in behavioral economics;
- get to know different research methods in the field of behavioral economics;
- learn to critically evaluate experimental designs;
- get introduced to current research papers in behavioral economics;
- become acquainted with the technical terminology in English.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. The grade will be determined in a final written exam. Students can earn a bonus to the final grade by successfully participating in the exercises. The total workload for this course is approximately 135.0 hours. For further information see German version. The lecture will be held in English.

Recommendations:
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.
Literature
8.64 Course: Economics I: Microeconomics [T-WIWI-102708]

Responsibility: Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-100950 - Preliminary Exam
M-WIWI-101398 - Introduction to Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lecture</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Puppe, Ammann</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Tutorial</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Ammann, Puppe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Week</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Exam</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Puppe</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exam</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. The main exam takes place subsequent to the lecture. The re-examination is offered at the same examination period. As a rule, only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Prerequisites

None

Below you will find excerpts from events related to this course:

Economics I: Microeconomics

2610012, WS 23/24, 3 SWS, Language: German, Open in study portal

Lecture (V)

On-Site
Content
The students learn the basic concepts in Microeconomics and some basics in game theory. The student will understand the working of markets in modern economies and the role of decision making. Furthermore, she should be able to understand simple game theoretic argumentation in different fields of Economics.

In the two main parts of the course problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) as well are discussed. In the final part of the course basics of imperfect competition (oligopolistic markets) and of game theory are presented.

It is the main aim of this course to provide basic knowledge in economic modelling. In particular, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative, more effective policy measures.

In particular, the student should learn

- to apply simple microeconomic concepts,
- to analyze the structure of real world economic phenomena,
- to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
- to suggest alternative policy measures,
- to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
- to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems

- to analyze the structure of microeconomics relationships and to present own problem solutions,
- solve simple economic decision problems.

The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. The main exam takes place subsequent to the lecture.

The re-examination is offered at the same examination period. Usually, only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

The total workload for this course is approximately 150 hours.

Literature

- H. Varian, Grundzüge der Mikroökonomik, 5. Auflage (2001), Oldenburg Verlag
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. Münschen, 2005
8.65 Course: Economics II: Macroeconomics [T-WIWI-102709]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2600014 | Economics II: Macroeconomics | 4 SWS | Lecture | Ott |
| ST 2024 | 2660015 | Economics II: Macroeconomics, Tutorial | 2 SWS | Tutorial (| Mirzoyan, Scheidt, Zoroglu |

Exams

| WT 23/24 | 7900028 | Economics II: Macroeconomics | Brumm |
| ST 2024 | 7900215 | Economics II: Macroeconomics | Ott |

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 120-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Below you will find excerpts from events related to this course:

Economics II: Macroeconomics

- 2600014, SS 2024, 4 SWS, Language: German, [Open in study portal](#)
Content
Classical Theory of Macroeconomic Production
Chapter 1: Gross domestic product
Chapter 2: Money and Inflation
Chapter 3: Open Economy I
Chapter 4: Unemployment

Growth: The economy in the long term
Chapter 5: Growth I
Chapter 6: Growth II

Business cycle: The economy in the short term
Chapter 7: Economy and aggregate demand I
Chapter 8: Economy and aggregate demand II
Chapter 9: Open Economy II
Chapter 10: Macroeconomic supply

Advanced topics of macroeconomics
Chapter 11: Dynamic model of the economy as a whole
Chapter 12: Microeconomic foundations
Chapter 13: Macroeconomic economic policy

Learning goals:
The students...
- can name the basic indicators, technical terms and concepts of macroeconomics.
- can use models to reduce complex relationships to their basic components.
- can analyse economic policy debates and form their own opinion on them.

Workload:
Total effort for 5 credit points: approx. 150 hours
Presence time: 45 hours
Before and after the LV: 67.5 hours
Exam and exam preparation: 37.5 hours

Literature
Als Grundlage dieser Veranstaltung dient das bekannte Lehrbuch „Makroökonomik“ von Greg Mankiw vom Schäffer Poeschel Verlag in der aktuellen Fassung.
Course: Economics III: Introduction in Econometrics [T-WIWI-102736]

Responsible: Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101499 - Applied Microeconomics
M-WIWI-101599 - Statistics and Econometrics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2520016</td>
<td>Lecture / ❇</td>
<td>2 SWS</td>
<td>Schienle, Bracher</td>
<td></td>
</tr>
<tr>
<td>ST 2024 2520017</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Schienle, Rüter, Bracher, Leimenstoll</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7900002</td>
<td>Lecture / ❇</td>
<td>Schienle</td>
<td></td>
</tr>
<tr>
<td>ST 2024 7900044</td>
<td>Lecture / ❇</td>
<td>Schienle</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 90-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Below you will find excerpts from events related to this course:

Economics III: Introduction to Econometrics

2520016, SS 2024, 2 SWS, Language: German, Open in study portal

Content

Learning objectives:

- Familiarity with the basic concepts and methods of econometrics
- Preparation of simple econometric surveys

Content:

- Simple and multiple linear regression (estimating parameters, confidence interval, testing, prognosis, testing assumptions)
- Model assessment

Requirements:

Knowledge of the lectures Statistics I + II is required.

Workload:

Total workload for 5 CP: approx. 150 hours
Attendance: 30 hours
Preparation and follow-up: 120 hours

Literature

Schneeweiß: Ökonometrie ISBN 3-7908-0008-2
8.67 Course: eFinance: Information Systems for Securities Trading [T-WIWI-110797]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101402 - eFinance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-105981 - Information Systems & Digital Business

Type
- Written examination

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2540454</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Weinhardt, Jaquart</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2540455</td>
<td>Übungen zu eFinance: Information Systems for Securities Trading</td>
<td>Practice</td>
<td>1 SWS</td>
<td></td>
<td>Motz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900182</td>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td></td>
<td></td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900269</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td></td>
<td></td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🔄 Blended (On-Site/Online), 🛑 On-Site, ✗ Cancelled

Competence Certificate

Success is monitored by means of ongoing elaborations and presentations of tasks and an examination (60 minutes) at the end of the lecture period. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-WIWI-102600 - eFinance: Information Engineering and Management for Securities Trading must not have been started.

Annotation

The course "eFinance: Information Systems for Securities Trading" covers different actors and their function in the securities industry in-depth, highlighting key trends in modern financial markets, such as Distributed Ledger Technology, Sustainable Finance, and Artificial Intelligence. Security prices evolve through a large number of bilateral trades, performed by market participants that have specific, well-regulated and institutionalized roles. Market microstructure is the subfield of financial economics that studies the price formation process. This process is significantly impacted by regulation and driven by technological innovation. Using the lens of theoretical economic models, this course reviews insights concerning the strategic trading behaviour of individual market participants, and models are brought market data. Analytical tools and empirical methods of market microstructure help to understand many puzzling phenomena in securities markets.

Below you will find excerpts from events related to this course:

eFinance: Information Systems for Securities Trading

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2540454</td>
<td>WS 23/24, 2 SWS, Language: English</td>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Literature

Weiterführende Literatur:

8.68 Course: Electric Energy Systems [T-ETIT-101923]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102379 - Power Network

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2</td>
<td>Electric Energy Systems</td>
<td>Leibfried</td>
<td>Leibfried</td>
</tr>
<tr>
<td>ST 2024</td>
<td>1</td>
<td>Übungen zu 2307391 Elektroenergiesysteme</td>
<td>Eser</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>1</td>
<td>Electric Energy Systems</td>
<td>Leibfried</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>1</td>
<td>Electric Energy Systems</td>
<td>Leibfried</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
Course: Electrical Engineering for Business Engineers, Part I [T-ETIT-100533]

Responsible: Dr. Wolfgang Menesklou
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-101155 - Electrical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2304223</td>
<td>Electrical Engineering for Business Engineers, Part I</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Menesklou</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2304225</td>
<td>Electrical Engineering for Business Engineers, Part I (Exercise to 2304223)</td>
<td>2 SWS</td>
<td>Practice /</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7304223</td>
<td>Electrical Engineering for Business Engineers, Part I</td>
<td>Menesklou</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7304223</td>
<td>Electrical Engineering for Business Engineers, Part I</td>
<td>Menesklou</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕷 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
8.70 Course: Electrical Engineering for Business Engineers, Part II [T-ETIT-100534]

Responsible: Dr. Wolfgang Menesklou
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-MACH-101261 - Emphasis in Fundamentals of Engineering
- M-WIWI-101839 - Additional Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Type</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Lecture</td>
<td>Elektrotechnik II für Wirtschaftsingenieure</td>
<td>3</td>
<td>Lecture</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Type</th>
<th>Description</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Exam</td>
<td>Electrical Engineering for Business Engineers, Part II</td>
<td>Menesklou</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Exam</td>
<td>Electrical Engineering for Business Engineers, Part II</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🧵 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.71 Course: Energy Policy [T-WIWI-102607]

Responsible: Prof. Dr. Martin Wietschel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101464 - Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Lecture</th>
<th>Credits</th>
<th>Exam</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2581959</td>
<td>Lecture / On-Site</td>
<td>2 SWS</td>
<td>Wietschel</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Exam</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7981959</td>
<td>Energy Policy</td>
<td>Fichtner</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7981959</td>
<td>Energy Policy</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- C Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None.

Below you will find excerpts from events related to this course:

Energy Policy
2581959, SS 2024, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V) On-Site

Content
The availability of cheap, environmentally friendly and secure energy is crucial for human welfare. However, the increasing scarcity of resources and increasing environmental pressures, with a particular focus on climate change, threaten human welfare through economic action. Energy contributes significantly to environmental pollution. The energy industry is characterised by high regulation and a significant influence of political decisions.
At the beginning of the lecture different perspectives on energy policy will be presented and the analysis of political decision-making processes will be discussed. Then the current energy policy challenges in the area of environmental pollution, regulation and the role of energy for households and industry will be discussed. Then the actors of energy policy and energy responsibilities in Europe will be discussed. The economic approaches from traditional environmental economics and sustainability as a new policy approach will then be discussed. Finally, energy policy instruments such as the promotion of renewable energies or energy efficiency are discussed in detail and how they can be evaluated.
The lecture emphasizes the relationship between theory and practice and presents some case studies.

Literature
Wird in der Vorlesung bekannt gegeben.
Course: Engine Measurement Techniques [T-MACH-105169]

Responsible: Dr.-Ing. Sören Bernhardt
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2134137</th>
<th>Engine measurement techniques 2 SWS</th>
<th>Lecture / 🗣</th>
<th>Bernhardt</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105169</th>
<th>Engine Measurement Techniques</th>
<th>Koch</th>
</tr>
</thead>
</table>

Competence Certificate
oral examination, Duration: 0,5 hours, no auxiliary means

Prerequisites
none

Recommendation
T-MACH-102194 Combustion Engines I

Below you will find excerpts from events related to this course:

Engine measurement techniques

- 2134137, SS 2024, 2 SWS, Language: German, [Open in study portal]

Literature

1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C
8.73 Course: Exam on Climatology [T-PHYS-105594]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Organisation: KIT Department of Physics
Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>5</td>
</tr>
</tbody>
</table>
8.74 Course: Facility Location and Strategic Supply Chain Management [T-WIWI-102704]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101413 - Applications of Operations Research
M-WIWI-101414 - Methodical Foundations of OR
M-WIWI-101421 - Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture / 🗣️ Nickel</td>
</tr>
<tr>
<td>Übungen zu Standortplanung und strategisches SCM</td>
<td>1 SWS Practice / 🗣️ Hoffmann</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Facility Location and Strategic Supply Chain Management Nickell</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Facility Location and Strategic Supply Chain Management Nickell</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
The assessment consists of a written exam (60 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester. Prerequisite for admission to examination is the successful completion of the online assessments.

Prerequisites
Prerequisite for admission to examination is the successful completion of the online assessments.

Recommendation
None

Annotation
The lecture is held in every winter term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Facility Location and Strategic Supply Chain Management

<table>
<thead>
<tr>
<th>Event</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550486, WS 23/24, 2 SWS, Language: German</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Organizational issues

Literature

Weltführende Literatur:

- Domschke, Drex: Logistik: Standorte, 4. Auflage, Oldenbourg, 1996
- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
8.75 Course: Failure of Structural Materials: Deformation and Fracture [T-MACH-102140]

Responsible: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101262 - Emphasis Materials Science

Type	Oral examination
Credits | 4
Grading scale | Grade to a third
Recurrence | Each winter term
Version | 1

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| WT 23/24 | 2181711 | Failure of structural materials: deformation and fracture | 3 SWS | Lecture / Practice (/) Gumbsch, Weygand
| Exams | | | | |
| WT 23/24 | 76-T-MACH-102140 | Failure of Structural Materials: Deformation and Fracture | | Weygand, Gumbsch, Kraft
| ST 2024 | 76-T-MACH-102140 | Failure of Structural Materials: Deformation and Fracture | | Weygand, Gumbsch

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam ca. 30 minutes
no tools or reference materials

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:

Failure of structural materials: deformation and fracture
2181711, WS 23/24, 3 SWS, Language: German, [Open in study portal](#)

Lecture / Practice (VÜ)
On-Site
Content

1. Introduction
2. Linear elasticity
3. Classification of stresses
4. Failure due to plasticity
 - Tensile test
 - Dislocations
 - Hardening mechanisms
 - Guidelines for dimensioning
5. Composite materials
6. Fracture mechanics
 - Hypotheses for failure
 - Linear elastic fracture mechanics
 - Crack resistance
 - Experimental measurement of fracture toughness
 - Defect measurement
 - Crack propagation
 - Application of fracture mechanics
 - Atomistics of fracture

The student

- Has the basic understanding of mechanical processes to explain the relationship between externally applied load and materials strength.
- Can explain the foundation of linear elastic fracture mechanics and is able to determine if this concept can be applied to a failure by fracture.
- Can describe the main empirical materials models for deformation and fracture and can apply them.
- Has the physical understanding to describe and explain phenomena of failure.

Preliminary knowledge in mathematics, mechanics and materials science recommended

Regular attendance: 22.5 hours
Self-study: 97.5 hours

The assessment consists of an oral examination (ca. 30 min) according to Section 4(2), 2 of the examination regulation.

Organizational issues

Übungstermine werden in der Vorlesung bekannt gegeben!

Nach aktuellem Stand Präsenz

Literature

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
8.76 Course: Failure of Structural Materials: Fatigue and Creep [T-MACH-102139]

Responsible: Dr. Patric Gruber
Prof. Dr. Peter Gumbsch

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2181715</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Gruber, Gumbsch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102139</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>4</td>
<td>Grade to a third</td>
<td>Gruber, Gumbsch</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102139</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>4</td>
<td>Grade to a third</td>
<td>Gruber, Gumbsch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam ca. 30 minutes
no tools or reference materials

Prerequisites
none

Recommendation
preliminary knowledge in mathematics, mechanics and materials science

Below you will find excerpts from events related to this course:

Failure of Structural Materials: Fatigue and Creep
2181715, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
On-Site
Content
1 Fatigue
1.1 Introduction
1.2 Lifetime
1.3 Fatigue Mechanisms
1.4 Material Selection
1.5 Notches and Shape Optimization
1.6 Case Studies: ICE-Accidents

2 Creep
2.1 Introduction
2.2 High Temperature Plasticity
2.3 Phänomenological Description of Creep
2.4 Creep Mechanisms
2.5 Alloying Effects

The student
- has the basic understanding of mechanical processes to explain the relationships between externally applied load and materials strength.
- can describe the main empirical materials models for fatigue and creep and can apply them.
- has the physical understanding to describe and explain phenomena of failure.
- can use statistical approaches for reliability predictions.
- can use its acquired skills, to select and develop materials for specific applications.

preliminary knowledge in mathematics, mechanics and materials science recommended
regular attendance: 22,5 hours
self-study: 97,5 hours

The assessment consists of an oral examination (ca. 30 min) according to Section 4(2), 2 of the examination regulation.

Literature
- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
- Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); Standardwerk über Ermüdung, alle Materialklassen, umfangreich, für Einsteiger und Fortgeschrittene
8.77 Course: Financial Accounting for Global Firms [T-WIWI-107505]

Responsible: Dr. Torsten Luedecke
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Title</th>
<th>SWS</th>
<th>Type/On-Site</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>Financial Accounting for Global Firms</td>
<td>2</td>
<td>Lecture</td>
<td>Luedecke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2 SWS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Practice</td>
<td>Übung zu Financial Accounting for Global Firms</td>
<td>1</td>
<td>Practice</td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Title</th>
<th>Type/On-Site</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>Financial Accounting for Global Firms</td>
<td></td>
<td>Luedecke, Ruckes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Written examination</td>
<td>Financial Accounting for Global Firms</td>
<td></td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None

Recommendation
Basic knowledge in corporate finance and accounting.

Annotation
New lecture in the winter term 2017/18.

Below you will find excerpts from events related to this course:

Financial Accounting for Global Firms
2530242, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Literature
8.78 Course: Financial Econometrics [T-WIWI-103064]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101599 - Statistics and Econometrics
M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture/Practice</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2520022</td>
<td>Financial Econometrics I</td>
<td>2</td>
<td>Lecture</td>
<td>Schienle, Buse</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2520023</td>
<td>Übungen zu Financial Econometrics I</td>
<td>2</td>
<td>Practice</td>
<td>Schienle, Buse</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900123</td>
<td>Financial Econometrics II</td>
<td>2</td>
<td>Schienle</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900126</td>
<td>Financial Econometrics</td>
<td>2</td>
<td>Schienle</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900223</td>
<td>Financial Econometrics</td>
<td>2</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗓 Cancelled

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Annotation
The next lecture will take place in the winter semester 2022/23.

Below you will find excerpts from events related to this course:

Financial Econometrics I

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Language</th>
<th>Online Link</th>
<th>Lecture/Practice</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520022</td>
<td>Financial Econometrics I</td>
<td>2</td>
<td>English</td>
<td>[Open in study portal]</td>
<td>Lecture</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Content

Learning objectives:
The student
- shows a broad knowledge of financial econometric estimation and testing techniques
- is able to apply his/her technical knowledge using software in order to critically assess empirical problems

Content:
ARMA, ARIMA, ARFIMA, (non)stationarity, causality, cointegration, ARCH/GARCH, stochastic volatility models, computer-based exercises

Requirements:
It is recommended to attend the course Economics III: Introduction to Econometrics [2520016] prior to this course.

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours
Literature
Additional literature will be discussed in the lecture.
8 COURSES

Course: Financial Econometrics II [T-WIWI-110939]

8.79 Course: Financial Econometrics II [T-WIWI-110939]

| Responsible: | Prof. Dr. Melanie Schienle |
| Organisation: | KIT Department of Economics and Management |
| Part of: | M-WIWI-101599 - Statistics and Econometrics
M-WIWI-105414 - Statistics and Econometrics II |

Type	Written examination
Credits	4.5
Grading scale	Grade to a third
Recurrence	Each summer term
Version	3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2521302</td>
<td>2 SWS</td>
<td>Financial Econometrics II</td>
<td>Each summer term</td>
</tr>
<tr>
<td>ST 2024 2521303</td>
<td>1 SWS</td>
<td>Übung zu Financial Econometrics II</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 7900081</td>
<td></td>
<td>Financial Econometrics II</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, x Cancelled

Competence Certificate
Written examination (90 minutes). If the number of participants is low, an oral examination will be held instead.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Financial Econometrics"

Annotation
Course language is English
The next lecture will take place in the summer semester of 2023.
8.80 Course: Financial Intermediation [T-WIWI-102623]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

Type
Written examination

Credits
4.5

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>7900078</td>
<td>Financial Intermediation</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900063</td>
<td>Financial Intermediation</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ruckes, Benz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900063</td>
<td>Financial Intermediation</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ruckes, Benz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900063</td>
<td>Financial Intermediation</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ruckes, Benz</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900078</td>
<td>Financial Intermediation</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ruckes, Benz</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900078</td>
<td>Financial Intermediation</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ruckes, Benz</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Financial Intermediation

2530232, WS 23/24, 2 SWS, Language: German, Open in study portal

Organizational issues

Terminankündigungen des Instituts beachten

Literature

Weiterführende Literatur:

8.81 Course: Financial Management [T-WIWI-102605]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101435 - Essentials of Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Financial Management</td>
<td></td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Financial Management</td>
<td></td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to Section 4 (2), 1 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

Knowledge of the content of the course Business Administration: Finance and Accounting [25026/25027] is recommended.

Below you will find excerpts from events related to this course:

Financial Management

2530216, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Literature

Weiterführende Literatur:

8.82 Course: FinTech [T-WIWI-112694]

Responsible: TT-Prof. Dr. Julian Thimme
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101402 - eFinance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2500049 | FinTech | 3 SWS | Lecture / Practice (Thimme) |

Exams

| WT 23/24 | 7900064 | FinTech | Thimme |

Competence Certificate
Written examination (90 minutes) during the lecture-free period of the semester (according to §4(2), 1 SPO). The examination is offered every semester and can be repeated at any regular examination date.

Prerequisites
None

Recommendation
Knowledge of the course Business Administration: Finance and Accounting [25026/25027] is very helpful.
8.83 Course: Fluid Power Systems [T-MACH-102093]

Responsibility: Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101266 - Automotive Engineering
- M-MACH-101267 - Mobile Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2114093</td>
<td>Fluid Technology</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Geimer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102093</td>
<td>Fluid Power Systems</td>
<td>Lecture / 🗣️</td>
<td></td>
<td></td>
<td></td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 minutes) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

none

Below you will find excerpts from events related to this course:

Fluid Technology

2114093, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

In the range of hydrostatics the following topics will be introduced:

- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:

- Compressors
- Motors
- Valves
- Pneumatic circuits.

- regular attendance: 21 hours
- self-study: 92 hours

Literature

Skriptum zur Vorlesung Fluidtechnik
Institut für Fahrzeugsystemtechnik
downloadbar
8.84 Course: Foundations of Informatics I [T-WWI-102749]

Responsible: Dr.-Ing. Michael Färber
Organisation: KIT Department of Economics and Management
Part of: M-WWI-101417 - Foundations of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Foundations of Informatics I</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Färber, Käfer</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Exercises to Foundations of Informatics I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Färber, Popovic, Noullet, Käfer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Foundations of Informatics I</td>
<td></td>
<td>Lecture / 🗣</td>
<td>Färber</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Foundations of Informatics I (Registration until 15 July 2024)</td>
<td></td>
<td>Lecture / 🗣</td>
<td>Färber</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an 1h written exam according to Section 4 (2), 1 of the examination regulation.
The exam takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Foundations of Informatics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

The lecture provides an introduction to basic concepts of computer science and software engineering. Essential theoretical foundations and problem-solving approaches, which are relevant in all areas of computer science, are presented and explained, as well as shown in practical implementations.

The following topics are covered:

- Object Oriented Modeling
- Logic (Propositional Calculus, Predicate Logic, Boolean Algebra)
- Algorithms and Their Properties
- Sort-and Search-Algorithms
- Complexity Theory
- Problem Specification
- Dynamic Data Structures

Learning objectives:

The student

- is able to formalise tasks in the domain of informatics and is able to identify solution methods
- knows the basic terminology of computer science and is capable of applying these terms to different problems.
- knows basic programming structures and is able to apply them (particularly simple data structures, object interaction and implementation of basic algorithms).

Workload:

- The total workload for this course is approximately 150 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 67.5 hours
- Exam and exam preparation: 37.5 hours
Literature

Exercises to Foundations of Informatics I

2511011, SS 2024, SWS, Language: German, Open in study portal

Practice (Ü) On-Site

Content

The exercises are related to the lecture Foundations of Informatics I. Multiple exercises are held that capture the topics, held in the lecture Foundations of Informatics I, and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

The following topics are covered:

- Object Oriented Modeling
- Logic (Propositional Calculus, Predicate Logic, Boolean Algebra)
- Algorithms and Their Properties
- Sort-and Search-Algorithms
- Complexity Theory
- Problem Specification
- Dynamic Data Structures

Learning objectives:

The student

- is able to formalise tasks in the domain of informatics and is able to identify solution methods
- knows the basic terminology of computer science and is capable of applying these terms to different problems.
- knows basic programming structures and is able to apply them (particularly simple data structures, object interaction and implementation of basic algorithms).

Literature

Course: Foundations of Informatics II [T-WIWI-102707]

Responsible: Prof. Dr. Sanja Lazarova-Molnar
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101417 - Foundations of Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type/On-Site</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2511012</td>
<td>Foundations of Informatics II</td>
<td>3</td>
<td>Lecture</td>
<td>Lazarova-Molnar</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2511013</td>
<td>Tutorien zu Grundlagen der</td>
<td>1</td>
<td>Tutorial</td>
<td>Lazarova-Molnar, Götz,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informatik II</td>
<td></td>
<td></td>
<td>Khodadadi</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>On-Site</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>79AIFB_Info2</td>
<td>Foundations of Informatics II</td>
<td></td>
<td>Lazarova-Molnar</td>
</tr>
<tr>
<td>ST 2024</td>
<td>79AIFB_Info2_A5</td>
<td>Foundations of Informatics II (Registration until 15 July 2024)</td>
<td></td>
<td>Lazarova-Molnar</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation. The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
It is recommended to attend the course "Foundations of Informatics I" beforehand.
Active participation in the practical lessons is strongly recommended.

Below you will find excerpts from events related to this course:

Content
The lecture deals with formal models for automata, languages and algorithms as well as real instances of these models, i.e. computer architecture and organization (hardware development, computer arithmetic, architecture models), programming languages (different language levels, from microprogramming to higher programming languages, as well as compiling and execution), operating systems and modes (architecture and properties of operating systems, operating system tasks, client-server systems), data organization and management (types of data organization, primary and secondary organization).

Learning objectives:
- Students acquire vast knowledge of methods and concepts in theoretical computer science and computer architectures.
- Based on the acquired knowledge and skills, students are capable of choosing and applying the appropriate methods and concepts for well-defined problem instances.
- Active participation in the tutorials enables students to acquire the necessary knowledge for developing appropriate solutions cooperatively.

Recommendations:
It is recommended to attend the course Foundations of Informatics I [2511010] beforehand.
Active participation in the practical lessons is strongly recommended.

Workload:
The total workload for this course is approximately 150 hours.

Organizational issues
Die Vorlesung wird zu Beginn des Semesters 4-stündig und am Ende 2-stündig gelesen, um eine bessere Abdeckung des Inhalts in den Übungen zu gewährleisten.
Literatur
Weiterführende Literatur:
Literatur wird in der Vorlesung bekannt gegeben.
8.86 Course: Foundations of Interactive Systems [T-WIWI-109816]

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-105928 - HR Management & Digital Workplace
- M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2540560</td>
<td>Foundations of Interactive Systems</td>
<td>3 SWS</td>
<td>Lecture / 🧩</td>
<td>Mädche, Langner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900326</td>
<td>Foundations of Interactive Systems</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900247</td>
<td>Foundations of Interactive Systems</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗿 Cancelled

Competence Certificate
Alternative exam assessment. The assessment is carried out in the form of a one-hour written examination and by carrying out a Capstone project.

Details on the assessment will be announced during the lecture.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:
Computers have evolved from batch processors to highly interactive systems. This offers new possibilities besides challenges for designing a successful interaction between humans and computers. Interactive systems are socio-technical systems in which users perform tasks by interacting with technology in a specific context to achieve specified goals and outcomes.

This lecture introduces key concepts and principles of interactive systems from a human and computer perspective. From a human perspective, we discuss selected individual characteristics, cognitive processes, the interplay between cognition and activity, as well as mental models. From a computer perspective, we introduce established interaction technologies as well as contemporary multimodal technologies (e.g., augmented/mixed reality, eye-based interaction, etc.). We also introduce established principles and guidelines for designing user interfaces. Furthermore, we describe the human-centered design process for interactive systems and supporting techniques & tools (e.g., personas, prototyping, user testing).

With this lecture, students acquire foundational knowledge to successfully design the interaction between humans and computers in business and private life. The course is complemented with a Design Capstone Project, where students in a team apply design methods & techniques to create an interactive prototype.

Learning Objectives

The students

- have a basic understanding of key conceptual and theoretical foundations of interactive systems from a human and computer perspective
- are aware of important design principles for the design of important classes of interactive systems
- know design processes and techniques for developing interactive systems
- know how to apply the knowledge and skills gathered in the lecture for a real-world problem (as part of design capstone project)

Prerequisites: No specific prerequisites are required for the lecture

Language of instruction: English

Bibliography

Further literature will be made available in the lecture. In case of questions feel free to approach Moritz Langner (moritz.langner@kit.edu)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Form) nach § 4 Abs. 2 Nr. 3 SPO. Die Leistungskontrolle erfolgt in Form einer einstündigen Klausur und der Durchführung eines Capstone Projektes. Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.
8.87 Course: Foundations of Mobile Business [T-WIWI-104679]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101426 - Electives in Informatics

Written examination
- **Type:** Written examination
- **Credits:** 4.5
- **Grading scale:** Grade to a third
- **Recurrence:** Each summer term
- **Version:** 4

Events
| ST 2024 | 2511226 | Foundations of mobile Business | 2 SWS | Lecture / 🗣 | Schiefer, Frister |
| ST 2024 | 2511227 | Exercises Foundations of mobile Business | 1 SWS | Practice / 🗣 | Schiefer, Frister |

Exams
| WT 23/24 | 79AIFB_GMB_A1 | Foundations of Mobile Business | Oberweis |

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment of this course is a written (60 min.) or (if necessary) oral examination according to §4(2) of the examination regulation.

Prerequisites
None

Annotation
Lecture and exercises are integrated.

Below you will find excerpts from events related to this course:

Foundations of mobile Business
2511226, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
The lecture covers the basics of mobile business with a focus on (information) technical basics. These are interlinked with the economic background in Germany.

Contents are:
1. organizational matters
2. introduction & definitions
3. mobile devices
4. mobile radio technologies
5. mobile communications market
6. mobile applications
7. digital radio technologies
8. location & context

Note: The teaching units listed above each have a different scope.

Learning objectives:
If you are confronted with a question in your job which affects "Mobile Business", you should be able to provide answers quickly and competently:

Market structures
technique
Possibilities for applications
lawsuits
issues

Workload:
The total workload for this course unit is approx. 135 hours (4.5 credit points).
Organizational issues
Vorlesung und Übung werden integriert angeboten.

Literature

 http://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/resources/Mobile_Communications/course_Material/index.html
- Martin Sauter: Grundkurs Mobile Kommunikationssysteme (6. Aufl. 2015)
- Dodel, H., Häupler, D.: Satellitenavigation

Einige relevante Informationen im Web

- Bundesnetzagentur http://www.bundesnetzagentur.de
 u.a. Jahresbericht und Marktbeobachtung
- VATM-Marktstudien
 http://www.vatm.de/vatm-marktstudien.html
- Verbände, bspw. BITKOM (bitkom.org), eco e.V. (eco.de)
- Presse, bspw. Teltarif, Heise, Golem, ...
- Statistiken (Statista Lizenz des KIT)
8.88 Course: Fuels and Lubricants for Combustion Engines [T-MACH-105184]

Responsible: Hon.-Prof. Dr. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2133108</td>
<td>2 SWS</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>Lecture / Kehrwald</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 76-T-MACH-105184</td>
<td></td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>Kehrwald</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: ca. 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Fuels and Lubricants for Combustion Engines
2133108, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content
electric drives and fuel cell drives with the associated operating materials will also be presented

- Introduction, basics, primary energy and energy chains
- Illustrative chemistry of hydrocarbons
- Fossil fuels, exploration, processing, standards
- Operating materials not fossil, renewable, alternative
- Fuels, lubricants, coolants, AdBlue
- Laboratory analysis, testing, test benches and measurement technology
- Excursion to test fields for motorized drives from 0.5 to 3,500 kW

Literature
Skript
Course: Functional Ceramics [T-MACH-105179]

Responsible: Dr. Manuel Hinterstein
Dr.-Ing. Wolfgang Rheinheimer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2126784</td>
<td>Functional Ceramics</td>
<td>Lecture / Blended</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Hinterstein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7600054</td>
<td>Functional Ceramics</td>
<td>Hinterstein</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105179</td>
<td>Functional Ceramics</td>
<td>Hinterstein</td>
</tr>
</tbody>
</table>

Legend:

- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 👤 On-Site
- ❌ Cancelled

Competence Certificate

The assessment consists of an oral exam (20 min) taking place at the agreed date.

Auxiliary means: none

The re-examination is offered upon agreement.

Prerequisites

none
8.90 Course: Fundamentals for Design of Motor-Vehicle Bodies I [T-MACH-102116]

Responsible: Dipl.-Ing. Horst Dietmar Bardehle

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101266 - Automotive Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / 🗣</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / 🗣</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral group examination

Duration: 30 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals for Design of Motor-Vehicles Bodies I

2113814, WS 23/24, 1 SWS, Language: German, Open in study portal

Content

1. History and design
2. Aerodynamics
3. Design methods (CAD/CAM, FEM)
4. Manufacturing methods of body parts
5. Fastening technology
6. Body in white / body production, body surface

Learning Objectives:

The students have an overview of the fundamental possibilities for design and manufacture of motor-vehicle bodies. They know the complete process, from the first idea, through the concept to the dimensioned drawings (e.g. with FE-methods). They have knowledge about the fundamentals and their correlations, to be able to analyze and to judge relating components as well as to develop them accordingly.

Organizational issues

Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterlias/

Termine und nähere Informationen: siehe ILIAS oder Institutshomepage

Dates and further information will be published on the homepage of the institute.
Literature
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
8.91 Course: Fundamentals for Design of Motor-Vehicle Bodies II [T-MACH-102119]

Responsible: Dipl.-Ing. Horst Dietmar Bardehle
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101266 - Automotive Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2114840</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>1 SWS</td>
<td>Lecture / 🗣</td>
<td>Bardehle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 76-T-MACH-102119</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>Bardehle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 76-T-MACH-102119</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>Bardehle, Gauterin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral group examination

Duration: 30 minutes
Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals for Design of Motor-Vehicle Bodies II
2114840, SS 2024, 1 SWS, Language: German, [Open in study portal](#)
Lecture (V)
On-Site

Content
1. Body properties/testing procedures
2. External body-parts
3. Interior trim
4. Compartment air conditioning
5. Electric and electronic features
6. Crash tests
7. Project management aspects, future prospects

Learning Objectives:
The students know that, often the design of seemingly simple detail components can result in the solution of complex problems. They have knowledge in testing procedures of body properties. They have an overview of body parts such as bumpers, window lift mechanism and seats. They understand, as well as, parallel to the normal electrical system, about the electronic side of a motor vehicle. Based on this they are ready to analyze and to judge the relation of these single components. They are also able to contribute competently to complex development tasks by imparted knowledge in project management.

Organizational issues
Voraussichtliche Termine, nähere Informationen und evtl. Änderungen:
siehe Instituts homepage.
Scheduled dates, further Information and possible changes of date:
see homepage of the institute.
Literature
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
8 COURSES

Course: Fundamentals in the Development of Commercial Vehicles [T-MACH-111389]

Responsible: Christof Weber

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101265 - Vehicle Development
- M-MACH-101267 - Mobile Machines

Type
- Oral examination

Credits
- 3

Grading scale
- Grade to a third

Recurrence
- see Annotations

Expansion
- 2 terms

Version
- 2

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Facts

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Weber</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Weber</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76T-MACH-111389</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
<td>Weber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76T-MACH-111389</td>
<td>Fundamentals in the Development of Commercial Vehicles</td>
<td>Weber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣️ On-Site
- X Cancelled

Competence Certificate

- Oral group examination
- Duration: appr. 30 minutes
- Auxiliary means: none

Prerequisites

- none

Annotation

- Fundamentals in the Development of Commercial Vehicles I, WT
- Fundamentals in the Development of Commercial Vehicles II, ST

Below you will find excerpts from events related to this course:

Fundamentals in the Development of Commercial Vehicles I

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113812</td>
<td>Lecture (V)</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend:
- 🗣️ On-Site
Content
1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodyshell work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Learning Objectives:
The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.

The students are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.

Organizational issues
Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterIlias/

Termine und Nähere Informationen: siehe ILIAS oder Institutshomepage

Dates and further information will be published on the homepage of the institute.

Literature

Fundamentals in the Development of Commercial Vehicles II
2114844, SS 2024, 1 SWS, Language: German, Open in study portal

Content
1. Gear boxes of commercial vehicles
2. Intermediate elements of the drive train
3. Axle systems
4. Front axles and driving dynamics
5. Chassis and axle suspension
6. Braking System
7. Systems
8. Excursion

Learning Objectives:
The students know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered frontaxle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application.

Organizational issues
Genaue Termine sowie nähere Informationen und eventuelle Terminänderungen:
siehe Institutshomepage.
Literature
1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803
8 COURSES

Course: Fundamentals of Automobile Development I [T-MACH-105162]

 Responsible: Prof.Dipl.-Ing. Rolf Frech
 Organisation: KIT Department of Mechanical Engineering
 Part of: M-MACH-101265 - Vehicle Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113810</td>
<td>Fundamentals of Automobile Development I</td>
<td>1</td>
<td>Lecture / 🗣️</td>
<td>Frech</td>
<td>Frech</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2113851</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>1</td>
<td>Lecture / 🗣️</td>
<td>Frech</td>
<td>Frech</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>1</td>
<td>Lecture / 🗣️</td>
<td>Frech, Unrau</td>
<td>Frech</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105162</td>
<td>Fundamentals of Automobile Development I</td>
<td>1</td>
<td>Lecture / 🗣️</td>
<td>Frech, Gießler</td>
<td>Frech</td>
</tr>
</tbody>
</table>

Legend: 🛥️ Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
Written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of Automobile Development I
2113810, WS 23/24, 1 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations - National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues
Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterilias/

Termine und nähere Informationen finden Sie auf der Institutshomepage.
Kann nicht mit Lehrveranstaltung 2113851 kombiniert werden.
Date and further information will be published on the homepage of the institute.
Cannot be combined with lecture 2113851.
Literature
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons

Principles of Whole Vehicle Engineering I
2113851, WS 23/24, 1 SWS, Language: English, Open in study portal

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Learning Objectives:
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Organizational issues
You will find the lecture material on ILIAS. To get the ILIAS password, KIT students refer to https://fast-web-01.fast.kit.edu/PasswoerterIlias/
Termine und nähere Informationen finden Sie auf der Institutshomepage.
Dats and further information will be published on the homepage of the institute.
Kann nicht mit Lehrveranstaltung 2113810 kombiniert werden
Cannot be combined with lecture 2113810.

Literature
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons
Course: Fundamentals of Automobile Development II [T-MACH-105163]

Responsible: Prof.Dipl.-Ing. Rolf Frech
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101265 - Vehicle Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>1,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2114842</th>
<th>Principles of Whole Vehicle Engineering II</th>
<th>1 SWS</th>
<th>Block / On-Site</th>
<th>Frech</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2114860</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>1 SWS</td>
<td>/ On-Site</td>
<td>Frech</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105163</th>
<th>Fundamentals of Automobile Development II</th>
<th>Frech, Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105163</td>
<td>Fundamentals of Automobile Development II</td>
<td>Frech, Gießler</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Canceled

Competence Certificate
Written examination

Duration: 90 minutes

Auxiliary means: none

Prerequisites
none

Below you will find excerpts from events related to this course:

Principles of Whole Vehicle Engineering II
2114842, SS 2024, 1 SWS, Language: German, Open in study portal

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues
Vorlesung findet als Blockvorlesung an folgenden Terminen statt: 02.05., 16.05., 06.06. 2024, jeweils von 08:00 bis 11:00 Uhr. Kann nicht mit der Veranstaltung [2114860] kombiniert werden. Cannot be combined with lecture [2114860].

Literature
Skript zur Vorlesung ist über ILIAS verfügbar.
Principles of Whole Vehicle Engineering II
2114860, SS 2024, 1 SWS, Language: English, Open in study portal

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Learning Objectives:
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Organizational issues
Veranstaltung findet als Blockvorlesung an folgenden Terminen statt: 02.05., 16.05., 06.06.2024 von 11:15 bis 14:00 Uhr.
Scheduled dates:
see homepage of the institute.
Kann nicht mit der Veranstaltung [2114842] kombiniert werden.
Cannot be combined with lecture [2114842].

Literature
Das Skript zur Vorlesung ist über ILIAS verfügbar.
8.95 Course: Fundamentals of Catalytic Exhaust Gas Aftertreatment [T-MACH-105044]

Responsible:
Prof. Dr. Olaf Deutschmann
Prof. Dr. Jan-Dierk Grunwaldt
Dr.-Ing. Heiko Kubach
Hon.-Prof. Dr. Egbert Lox

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2134138</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Canceled

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites

none

Below you will find excerpts from events related to this course:

Fundamentals of catalytic exhaust gas aftertreatment
2134138, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Organizational issues
Blockvorlesung, Termin und Ort werden auf Ilias sowie der Homepage des IFKM und ITCP bekannt gegeben.

Literature

Skrift, erhältlich in der Vorlesung

8 COURSES

8.96 Course: Fundamentals of Production Management [T-WIWI-102606]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101437 - Industrial Production I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2581950</td>
<td>Fundamentals of Production Management</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Schultmann</td>
</tr>
<tr>
<td>ST 2024 2581951</td>
<td>Übungen Grundlagen der Produktionswirtschaft</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Braun</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7981950</td>
<td>Fundamentals of Production Management</td>
<td></td>
<td></td>
<td>Schultmann</td>
</tr>
<tr>
<td>ST 2024 7981950</td>
<td>Fundamentals of Production Management</td>
<td></td>
<td></td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Canceled

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None

Below you will find excerpts from events related to this course:

V Fundamentals of Production Management
2581950, SS 2024, 2 SWS, Language: German, Open in study portal

Content
This lecture focuses on strategic production management with respect to various economic aspects. Interdisciplinary approaches of systems theory will be used to describe the challenges of industrial production. This course will emphasize the importance of R&D as the central step in strategic corporate planning to ensure future long-term success. In the field of site selection and planning for firms and factories, attention will be drawn upon individual aspects of existing and greenfield sites as well as existing distribution and supply centres. Students will obtain knowledge in solving internal and external transport and storage problems.

Organizational issues
Blockveranstaltung, siehe Institutsaushang

Literature
Wird in der Veranstaltung bekannt gegeben.
Course: Gear Cutting Technology [T-MACH-102148]

Responsible: Hon.-Prof. Dr. Markus Klaiber
Organisation: KIT Department of Mechanical Engineering
Part of:
- M-MACH-101265 - Vehicle Development
- M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam (20 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Gear Technology
2149655, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content
Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

Learning Outcomes:
The students ...
- can describe the basic terms of gearings and are able to explain the imparted basics of the gearwheel and gearing theory.
- are able to specify the different manufacturing processes and machine technologies for producing gearings. Furthermore they are able to explain the functional principles and the dis-/advantages of these manufacturing processes.
- can apply the basics of the gearing theory and manufacturing processes on new problems.
- are able to read and interpret measuring records for gearings. are able to make an appropriate selection of a process based on a given application
- can describe the entire process chain for the production of toothed components and their respective influence on the resulting workpiece properties.

Workload:
regular attendance: 21 hours
self-study: 99 hours
Literature
Medien:
Skit zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.
Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.98 Course: Geological Hazards and Risk [T-PHYS-103525]

Responsible: Dr. Andreas Schäfer
Organisation: KIT Department of Physics
Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture/M</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 4060121</td>
<td>2 SWS</td>
<td>Geological Hazards and Risk</td>
<td>Schäfer, Rietbrock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4060122</td>
<td>2 SWS</td>
<td>Exercises on Geological Hazards and Risk</td>
<td>Schäfer, Rietbrock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7800114</td>
<td></td>
<td>Geological Hazards and Risk</td>
<td>Rietbrock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗹 On-Site, ✗ Cancelled
8.99 Course: Global Optimization I [T-WIWI-102726]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101413 - Applications of Operations Research
M-WIWI-101414 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2550134</th>
<th>Global Optimization I</th>
<th>2 SWS</th>
<th>Lecture / 🗤</th>
<th>Stein</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7900004_WS2324_NK</th>
<th>Global Optimization I</th>
<th>Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>7900205_SS2024_HK</td>
<td>Global Optimization I</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗤 On-Site, ☘️ Cancelled

Competence Certificate

Success is in the form of a written examination (60 min.) (according to § 4(2), 1 SPO). The successful completion of the exercises is required for admission to the written exam.

The exam is offered in the lecture of semester and the following semester.

The success check can be done also with the success control for “Global optimization II”. In this case, the duration of the written exam is 120 min.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

| Global Optimization I
2550134, SS 2024, 2 SWS, Language: German, Open in study portal | Lecture (V)
On-Site |
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley’s cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of nonconvex optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
Course: Global Optimization I and II [T-WIWI-103638]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101414 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2550134</td>
<td>Global Optimization I</td>
<td>2</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2550135</td>
<td>Exercise to Global Optimization I and II</td>
<td>2</td>
<td>Practice</td>
<td>Stein, Beck</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2550136</td>
<td>Global Optimization II</td>
<td>2</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900006_WS2324_NK</td>
<td>Global Optimization I and II</td>
<td>2</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900207_SS2024_HK</td>
<td>Global Optimization I and II</td>
<td>2</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the lecture is a written examination (120 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Global Optimization I

2550134, SS 2024, 2 SWS, Language: German, [Open in study portal](#)
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley’s cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of nonconvex optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
Literature

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
8.101 Course: Global Optimization II [T-WIWI-102727]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101414 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Global Optimization II</td>
<td>2</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>Type</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Global Optimization II</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Global Optimization II</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of "Global optimization I". In this case, the duration of the written examination takes 120 minutes.

Prerequisites

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Global Optimization II

2550136, SS 2024, 2 SWS, Language: German, [Open in study portal](#)
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via alphaBB method
- Branch-and-bound methods
- Lipschitz optimization

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of convex optimization problems forms the contents of the lecture "Global Optimization I". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Literature

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
8.102 Course: Global Production [T-MACH-110991]

Responsible: Prof. Dr.-Ing. Gisela Lanza

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT 23/24 2149613</td>
<td>Global Production</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT 23/24 76-T-MACH-110991</td>
<td>Global Production</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Lanza</td>
</tr>
<tr>
<td></td>
<td>ST 2024 76-T-MACH-110991</td>
<td>Global Production</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate

Written Exam (60 min)

Prerequisites

T-MACH-108848 - Globale Produktion und Logistik - Teil 1: Globale Produktion must not be commenced.
T-MACH-105158 - Globale Produktion und Logistik - Teil 1: Globale Produktion must not be commenced.
T-MACH-110337 - Globale Produktion und Logistik must not be commenced.

Below you will find excerpts from events related to this course:

Global Production

2149613, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content
The lecture examines the management of global production networks of manufacturing companies. It gives an overview of the influencing factors and challenges of global production. In-depth knowledge of common methods and procedures for planning, designing, and managing global production networks is imparted.

Therefore, the lecture first of all discusses the connections and interdependencies between the business strategy and the production strategy and illustrates necessary tasks for the definition of a production strategy. Methods for site selection, for the site-specific adaptation of product design and production technology as well as for the establishment of new production sites and for the adaptation of existing production networks to changing framework conditions are subsequently taught within the context of the design of the network footprint. With regard to the management of global production networks, the lecture addresses challenges associated with coordination, procurement, and order management in global networks. The lecture is complemented by a discussion on the use of industry 4.0 applications in global production and current trends in planning, designing, and managing global production networks.

The topics include:

- Basic conditions and influencing factors of global production (historical development, targets, chances and threats)
- Framework for planning, designing, and managing global production networks
- Production strategies for global production networks
 - From business strategy to production strategy
 - Tasks of the production strategy (product portfolio management, circular economy, planning of production depth, production-related research and development)
- Design of global production networks
 - Basic types of network structures
 - Planning process for the design of the network footprint
 - Adaptation of the network footprint
 - Site selection
 - Location-specific adaptation of production technology and product design
- Management of global production networks
 - Network coordination
 - Procurement process
 - Order management
- Trends in planning, designing, and managing global production networks

Learning Outcomes:
The students ...

- can explain the general conditions and influencing factors of global production
- are capable to apply defined procedures for site selection and to evaluate site decisions with the help of different methods
- are able to select the adequate scope of design for site-appropriate production and product construction cases specifically
- can state the central elements in the planning process of establishing a new production site.
- are capable to make use of the methods to design and scale global production networks for company-individual problems
- are able to show up the challenges and potentials of the departments sales, procurement as well as research and development on a global basis.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Recommendations:
Combination with Global Production and Logistics – Part 2

Literature
Medien
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt
empfohlene Sekundärliteratur:

Media
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
recommended secondary literature:
Course: Handling Characteristics of Motor Vehicles I [T-MACH-105152]

Responsible: Dr.-Ing. Hans-Joachim Unrau

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101264 - Handling Characteristics of Motor Vehicles

Type
- Oral examination

Credits
- 3

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2113807</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🗿 On-Site, ❌ Cancelled

Competence Certificate

Verbally

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Handling Characteristics of Motor Vehicles I

<table>
<thead>
<tr>
<th>Code</th>
<th>Event</th>
<th>Description</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113807</td>
<td>WT 23/24</td>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lecture (V) Online

Content

1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D’Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Learning Objectives:

The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Organizational issues

Die Vorlesung wird als Videostream zur Verfügung gestellt. Sie finden den Videostream und das Vorlesungsmaterial auf ILIAS. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterilias/
Literature
8.104 Course: Handling Characteristics of Motor Vehicles II [T-MACH-105153]

Responsible: Dr.-Ing. Hans-Joachim Unrau
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101264 - Handling Characteristics of Motor Vehicles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td></td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2114838</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 76-T-MACH-105153</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td></td>
<td></td>
<td>Unrau</td>
<td></td>
</tr>
<tr>
<td>ST 2024 76-T-MACH-105153</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td></td>
<td></td>
<td>Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 💻 Blended (On-Site/Online), ♦ On-Site, ❌ Cancelled

Competence Certificate

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

Handling Characteristics of Motor Vehicles II

2114838, SS 2024, 2 SWS, Language: German, Open in study portal

Content

1. Vehicle handling: Bases, steady state cornering, steering input step, single sine, double track switching, slalom, cross-wind behavior, uneven roadway

2. stability behavior: Basics, stability conditions for single vehicles and for vehicles with trailer

Learning Objectives:
The students have an overview of common test methods, with which the handling of vehicles is gauged. They are able to interpret results of different stationary and transient testing methods. Apart from the methods, with which e.g. the driveability in curves or the transient behaviour from vehicles can be registered, also the influences from cross-wind and from uneven roadways on the handling characteristics are well known. They are familiar with the stability behavior from single vehicles and from vehicles with trailer. Consequently they are ready to judge the driving behaviour of vehicles and to change it by specific vehicle modifications.

Organizational issues

Die Vorlesung wird als Videostream zur Verfügung gestellt. Sie finden den Videostream und das Vorlesungsmaterial auf ILIAS. Das ILIAS-Passwort erhalten Sie unter: https://fast-web-01.fast.kit.edu/PasswoerterIlias/

Literature

Course: High Performance Powder Metallurgy Materials [T-MACH-102157]

Responsible: apl. Prof. Dr. Günter Schell

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2126749</td>
<td>Advanced powder metals</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Schell</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102157</td>
<td>High Performance Powder Metallurgy Materials</td>
<td>Lecture</td>
<td>Schell, Wagner</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102157</td>
<td>High Performance Powder Metallurgy Materials</td>
<td>Lecture</td>
<td>Schell</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 20-30 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Advanced powder metals

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2126749</td>
<td>Advanced powder metals</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Schell</td>
</tr>
</tbody>
</table>

Literature

- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
8.106 Course: Human Resource Management [T-WIWI-102909]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101513 - Human Resources and Organizations
M-WIWI-105928 - HR Management & Digital Workplace

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Nieken</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Nieken, Mitarbeiter, Walther</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Nieken</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment of this course is a written examination of 1 hour. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites

None

Recommendation

Completion of module Business Administration is recommended.

Basic knowledge of microeconomics, game theory, and statistics is recommended.

Below you will find excerpts from events related to this course:

Human Resource Management

2573005, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)
Content
The students acquire basic knowledge in the fields of human resource planning, selection and talent management. Different processes and instruments and their link to corporate strategy are evaluated based on microeconomic and behavioral approaches. The results are tested and discussed based on empirical data.

Aim
The student
- understands the processes and instruments of human resource management.
- analyzes different methods of human resource planning and selection and evaluates their usefulness.
- analyzes different processes of talent management and evaluates the strengths and weaknesses.
- understands the challenges of human resource management and its link to corporate strategy.

Workload
The total workload for this course is approximately 135 hours.

Lecture: 32 hours
Preparation of lecture: 52 hours
Exam preparation: 51 hours

Literature
- Personnel Economics in Practice, Lazear & Gibbs, John Wiley & Sons, 2014
- Strategic Human Resources. Frameworks for General Managers, Baron & Kreps, John Wiley & Sons, 1999
8.107 Course: Hydraulic Engineering and Water Management [T-BGU-101667]

Responsible: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 6200511</td>
</tr>
<tr>
<td>Wasserbau und Wasserwirtschaft 2 SWS Lecture Rodrigues Pereira da Franca</td>
</tr>
<tr>
<td>WT 23/24 6200512</td>
</tr>
<tr>
<td>Übungen zu Wasserbau und Wasserwirtschaft 1 SWS Practice Seidel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 8230101667</td>
</tr>
<tr>
<td>Hydraulic Engineering and Water Management Rodrigues Pereira da Franca</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam with 60 minutes

Prerequisites
None

Recommendation
None

Annotation
None
Course: Hydrogen and reFuels - Energy Conversion in Combustion Engines [T-MACH-111585]

Responsible: Dr.-Ing. Heiko Kubach
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101275 - Combustion Engines I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2134155</td>
<td>Lecture</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7600092</td>
<td>Examination</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105564</td>
<td>Examination</td>
<td>Hydrogen and reFuels - Energy Conversion in Combustion Engines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, appr. 25 minutes, no auxiliary means

Prerequisites

none

Below you will find excerpts from events related to this course:

V Hydrogen and reFuels - Energy Conversion in Combustion Engines
2134155, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

New types of CO2-neutral fuels such as gaseous hydrogen but also liquid synthetic fuels often place specific requirements on engine systems that differ significantly from operation with conventional fuels. These special aspects of engine energy conversion are dealt with in this lecture.

Introduction
Thermodynamics of combustion engines
Fundamentals
gas exchange
Flow field
Wall heat losses
Combustion in gasoline engines
Pressure Trace Analysis
Combustion in Diesel engines
Specific Topics of Hydrogen Combustion
Waste heat recovery
Course: Hydrology [T-BGU-101693]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Erwin Zehe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Civil Engineering, Geo and Environmental Sciences</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Hydrology</td>
<td>2 SWS</td>
<td>Lecture / ⚪</td>
<td>Zehe, Wienhöfer</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Tutorial Hydrology</td>
<td>1 SWS</td>
<td>Practice / ⚪</td>
<td>Zehe, Wienhöfer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Hydrology</td>
<td></td>
<td></td>
<td>Wienhöfer, Zehe</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), ⚪ On-Site, ✗ Cancelled

Prerequisites
None

Recommendation
None

Annotation
None
8.110 Course: I4.0 Systems Platform [T-MACH-106457]

Responsible: Dipl.-Ing. Thomas Maier
Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>I4.0 Systems platform</td>
<td>4 SWS</td>
<td>Project (P)</td>
<td>Each term</td>
</tr>
<tr>
<td>ST 2024</td>
<td>I4.0 Systems platform</td>
<td>4 SWS</td>
<td>Project (P)</td>
<td>Each term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>I4.0 Systems platform</td>
<td>4 SWS</td>
<td>Project (P)</td>
<td>Each term</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (project work)

Prerequisites

None

Annotation

Limited number of participants.

Below you will find excerpts from events related to this course:

I4.0 Systems platform

2123900, WS 23/24, 4 SWS, Language: German, Open in study portal
Project (PRO)
On-Site

Content

Industry 4.0, IT systems for fabrication (e.g.: CAx, PDM, CAM, ERP, MES), process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Students can

- describe the fundamental concepts, challenges, and objectives of Industrie 4.0 and name the essential terms in context of information management
- explain the necessary information flow between the different IT systems. They get practically knowledge about using current IT systems in context of I4.0, from order to production.
- map and analyze processes in the context of Industry 4.0 with special methods of process modelling
- collaboratively grasp practical I4.0 issues using existing hardware and software and work out solutions for a continuous improvement process in a team
- prototypically implement the self-developed solution proposal with the given IT systems and the existing hardware equipment and finally present the results

Literature

Keine / None
Content
Industry 4.0, IT systems for fabrication (e.g.: CAx, PDM, CAM, ERP, MES), process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Students can
- describe the fundamental concepts, challenges, and objectives of Industrie 4.0 and name the essential terms in context of information management
- explain the necessary information flow between the different IT systems. They get practically knowledge about using current IT systems in context of I4.0, from order to production.
- map and analyze processes in the context of Industry 4.0 with special methods of process modelling
- collaboratively grasp practical I4.0 issues using existing hardware and software and work out solutions for a continuous improvement process in a team
- prototypically implement the self-developed solution proposal with the given IT systems and the existing hardware equipment and finally present the results

Literature
Keine / None
8.111 Course: Ignition Systems [T-MACH-105985]

Responsible: Dr.-Ing. Olaf Toedter
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

Ignition systems
2133125, WS 23/24, 2 SWS, Language: German, Open in study portal

Legends: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
oral exam, 20 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Content

- Ignition Process
- Spark Ignition
- Principle of Spark Ignition Systems
- Limits of Spark Ignition
- New Developments of Spark Ignition Systems
- New an Alternative Ignition Systems
Course: Industrial Organization [T-WIWI-102844]

Responsible: Prof. Dr. Johannes Philipp Reiß
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101501 - Economic Theory

Type
Written examination
Credits
4.5
Grading scale
Grade to a third
Recurrence
Irregular
Version
1

Events
<table>
<thead>
<tr>
<th>Code</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2</td>
<td>Industrial Organization</td>
<td>German</td>
<td>On-Site</td>
</tr>
<tr>
<td>ST 2024</td>
<td>1</td>
<td>Übung zu Industrieökonomie</td>
<td>German</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Code</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7</td>
<td>Industrial Organization</td>
<td>German</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
Completion of the module Economics [WW1VWL] is assumed.

Annotation
This course is not given in summer 2017.

Below you will find excerpts from events related to this course:

Industrial Organization
2560238, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Literature

Verpflichtende Literatur:

Ergänzende Literatur:
8.113 Course: Information Engineering [T-MACH-102209]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>2024</td>
<td>Information</td>
<td>2</td>
<td>Seminar / 🧩</td>
<td>Meyer, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>23/24</td>
<td>Information</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Ovtcharova, Meyer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🟩 On-Site, ✗ Cancelled

Competence Certificate
Alternative exam assessment (written composition and speech)

Prerequisites
None

Below you will find excerpts from events related to this course:

Information Engineering

2122014, SS 2024, 2 SWS, Language: German/English, [Open in study portal](#)

Seminar (S)
Blended (On-Site/Online)

Content

Seminar papers on current research topics of the Institute for Information Management in Engineering. The respective topics are presented at the beginning of each semester.

Organizational issues

Siehe ILIAS-Kurs

Literature

Themenspezifische Literatur
8.114 Course: Integrated Information Systems for Engineers [T-MACH-102083]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 1212001 Integrated Information Systems for engineers</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
<tr>
<td>ST 2024 1212001 Integrated Information Systems for engineers</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Elstermann, Meyer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 76-T-MACH-102083 Integrated Information Systems for Engineers</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination 20 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

Integrated Information Systems for engineers
2121001, WS 23/24, 3 SWS, Language: German, Open in study portal

Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature
Vorlesungsfolien / lecture slides
Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Students can:

- illustrate the structure and operating mode of information systems
- describe the structure of relational databases
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes

Literature

Vorlesungsfolien / lecture slides
8.115 Course: Integrated Production Planning in the Age of Industry 4.0 [T-MACH-109054]

Responsible: Prof. Dr.-Ing. Gisela Lanza

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101272 - Integrated Production Planning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2150660</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>6</td>
<td>Lecture / Practice (/)</td>
<td>Lanza</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-109054</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td></td>
<td></td>
<td>Lanza</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-109054</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td></td>
<td></td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Prerequisites

"T-MACH-108849 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" as well as "T-MACH-102106 Integrierte Produktionsplanung" must not be commenced.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Language:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>2150660</td>
<td>SS 2024, 6 SWS, Language: German, Open in study portal</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (120 min)
Content
Integrated Production Planning in the age of Industry 4.0 will be taught in the context of this engineering science lecture. In addition to a comprehensive introduction to Industry 4.0, the following topics will be addressed at the beginning of the lecture:

- Basics, history and temporal development of production
- Integrated production planning and integrated digital engineering
- Principles of integrated production systems and further development with Industry 4.0

Building on this, the phases of integrated production planning are taught in accordance with VDI Guideline 5200, whereby special features of parts production and assembly are dealt with in the context of case studies:

- Factory planning system
- Definition of objectives
- Data collection and analysis
- Concept planning (structural development, structural dimensioning and rough layout)
- Detailed planning (PPS, process simulation as a validation tool, planning of conveyor technology and storage systems for linking production and IT systems in the I4.0 factory)
- Preparation and monitoring of implementation
- Start-up and series support

The lecture contents are complemented by numerous current practical examples with a strong Industry 4.0 reference. Aspects of sustainability are anchored in all units and thus basic knowledge of sustainable production planning is taught. Within the exercises the lecture contents are deepened and applied to specific problems and tasks.

Learning Outcomes:
The students ...

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.
- know the basic features of sustainable production planning and can apply underlying knowledge.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues
Vorlesungstermine dienstags 14.00 Uhr und donnerstags 14.00 Uhr, Übungstermine donnerstags 15.45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Course: Integrative Strategies in Production and Development of High Performance Cars [T-MACH-105188]

Responsible: Karl-Hubert Schlichtenmayer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credit (SWS)</th>
<th>Lecture Type</th>
<th>Legend</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2150601</td>
<td>Lecture/🗣️</td>
<td>🕹️</td>
<td>Schlichtenmayer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credit (SWS)</th>
<th>Lecture Type</th>
<th>Legend</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105188</td>
<td>Lecture/🗣️</td>
<td>🕹️</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105188</td>
<td>Lecture/🗣️</td>
<td>🕹️</td>
<td>Schlichtenmayer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎬 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
Written Exam (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Integrative Strategies in Production and Development of High Performance Cars
2150601, SS 2024, 2 SWS, Language: German, Open in study portal
Lecture (V) On-Site
Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:
- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Learning Outcomes:
The students ...
- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.117 Course: International Finance [T-WWI-102646]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101402 - eFinance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

Type	Credits	Grading scale	Recurrence	Version
Written examination | 3 | Grade to a third | see Annotations | 1

Events

| ST 2024 | 2530570 | International Finance | 2 SWS | Lecture / | Walter, Uhrig-Homburg

Exams

| WT 23/24 | 7900052 | International Finance | Uhrig-Homburg |

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

None

Annotation

The course is offered as a 14-day or block course.

Below you will find excerpts from events related to this course:

International Finance

2530570, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site

Organizational issues

Kickoff am Mittwoch, 24.04.24, 15:45 - 19:00 Uhr im Raum 320 im Geb. 09.21 (Blücherstr. 17). Die Veranstaltung wird samstags als Blockveranstaltung angeboten, nach dem Kickoff nach Absprache.

Literature

Weiterführende Literatur:

8.118 Course: Internship [T-WIWI-102611]

- **Responsible:** Studiendekan des KIT-Studienganges
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101419 - Internship

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>10</td>
<td>pass/fail</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
see module description

Prerequisites
Kein
Course: Introduction to Bionics [T-MACH-111807]

Responsible: apl. Prof. Dr. Hendrik Hölscher
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2142151 Introduction to Biomimetics</th>
<th>2 SWS</th>
<th>Lecture / Hölscher, Greiner</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-102172 Introduction into Biomimetics</th>
<th>Hölscher</th>
</tr>
</thead>
</table>

Competence Certificate
written exam (duration: 60 minutes)

Prerequisites
none

Annotation
Brick T-MACH-102172 may not be started

Below you will find excerpts from events related to this course:

Video: Introduction to Biomimetics
2142151, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
Bionics focuses on the design of technical products following the example of nature. For this purpose we have to learn from nature and to understand its basic design rules. Therefore, the lecture focuses on the analysis of the fascinating effects used by many plants and animals. Possible implementations into technical products are discussed in the end.

The students should be able analyze, judge, plan and develop biomimetic strategies and products.

Basic knowledge in physics and chemistry

The successful attendance of the lecture is controlled by a written examination.

Organizational issues
Im ILIAS werden Materialien (Videos, Originalliteratur, Übungen) zur Vertiefung zur Verfügung gestellt.
Für die schriftliche Klausur werden zwei Termine angeboten (erste Woche nach Vorlesungsende im Sommersemester und eine Woche vor Vorlesungsbeginn im Wintersemester).

Literature
Folien und Literatur werden in ILIAS zur Verfügung gestellt.
8.120 Course: Introduction to Ceramics [T-MACH-100287]

Responsible: apl. Prof. Dr. Günter Schell

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / 🧩</td>
<td>3 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (30 min) taking place at a specific date. The re-examination is offered at a specific date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Introduction to Ceramics
2125757, WS 23/24, 3 SWS, Language: German, Open in study portal

Literature

- Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
- S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier
8.121 Course: Introduction to Energy Economics [T-WIWI-102746]

- **Responsible:** Prof. Dr. Wolf Fichtner
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101464 - Energy Economics

Type
- Written examination

Credits
- 5.5

Grading scale
- Grade to a third

Recurrence
- Each summer term

Version
- 6

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2581010</td>
<td>Introduction to Energy Economics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>6</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2581011</td>
<td>Übungen zu Einführung in die Energiewirtschaft</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>6</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Title</th>
<th>Code</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7981010</td>
<td>Introduction to Energy Economics</td>
<td>Fichtner</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7981010</td>
<td>Introduction to Energy Economics</td>
<td>Fichtner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

Below you will find excerpts from events related to this course:

Introdución to Energy Economics

<table>
<thead>
<tr>
<th>Code</th>
<th>SS 2024</th>
<th>Language</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581010</td>
<td>2 SWS</td>
<td>German</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Content

1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

The student is able to

- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Literature

Weiterführende Literatur:
- Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
8.122 Course: Introduction to Engineering Geology [T-BGU-101500]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Philipp Blum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Civil Engineering, Geo and Environmental Sciences</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>6339057</td>
<td>Einführung in die Ingenieurgeologie</td>
</tr>
</tbody>
</table>

Exams			
--------	----		
WT 23/24	8210_101500	Introduction to Engineering Geology	Blum

Prerequisites

none

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101259 - Engineering Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2162238</td>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>2 SWS</td>
<td>Lecture / Römer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2162239</td>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials (Tutorial)</td>
<td>1 SWS</td>
<td>Practice / Römer, Luo</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102208-1</td>
<td>Introduction to Engineering Mechanics I: Statics (75min)</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102208-2</td>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials (120min)</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102208-1</td>
<td>Introduction to Engineering Mechanics I: Statics (75 Min)</td>
<td>Fidlin</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102208-2</td>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials (120 Min)</td>
<td>Fidlin</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a written examination (120 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

For students of economics the assessment consists of a written examination (Statics - 75 min.)
Permitted utilities: non-programmable calculator

Prerequisites
None

Below you will find excerpts from events related to this course:

Introduction to Engineering Mechanics I: Statics and Strength of Materials
2162238, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
Statics: force · moment · general equilibrium conditions · center of mass · inner force in structure · plane frameworks · theory of adhesion
8.124 Course: Introduction to Engineering Mechanics II : Dynamics [T-MACH-102210]

Responsible: Prof. Dr.-Ing. Alexander Fidlin
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-101261 - Emphasis in Fundamentals of Engineering
M-WIWI-101839 - Additional Fundamentals of Engineering

Type
Written examination

Credits
5

Grading scale
Grade to a third

Recurrence
Each winter term

Version
1

Events

<table>
<thead>
<tr>
<th>Course</th>
<th>Lecture</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Course</th>
<th>Lecture</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Fidlin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written examination (75 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination is offered every semester. Re-examinations are offered at every ordinary examination date.

Permitted utilities: non-programmable calculator, literature.

Prerequisites

None

Below you will find excerpts from events related to this course:

V
Introduction to Engineering Mechanics II : Dynamics
2161276, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)
8.125 Course: Introduction to Finance and Accounting [T-WIWI-112820]

Responsibility:
- Dr. Torsten Luedcke
- Prof. Dr. Martin Ruckes
- Dr. Jan-Oliver Strych
- Prof. Dr. Marliese Uhrig-Homburg
- Prof. Dr. Marcus Wouters

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-105769 - Financing and Accounting

Type:
- Written examination

Credits:
- 5

Grading scale:
Grade to a third

Recurrence:
Each summer term

Version:
2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grades</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Introduction to Finance and Accounting</td>
<td>2 SWS</td>
<td>Tutorial</td>
<td>Each summer term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Finance and Accounting</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grades</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financing and Accounting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ruckes, Wouters, Luedcke</td>
<td></td>
</tr>
<tr>
<td>Financing and Accounting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ruckes, Wouters, Luedcke</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam. The examination is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Below you will find excerpts from events related to this course:

Introduction to Finance and Accounting

2610026, SS 2024, 2 SWS, Language: German, [Open in study portal]

Lecture (V)
On-Site

Content
The lecture covers the following topics:

- Investment and Finance
 - Valuation of Bonds and Stocks
 - Capital Budgeting
 - Portfolio Theory
- Financial Accounting
- Management Accounting

Literature
Ausführliche Literaturhinweise werden in den Materialen zur Vorlesung gegeben.
8.126 Course: Introduction to Game Theory [T-WIWI-102850]

Responsible: Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101499 - Applied Microeconomics
M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2520525 Introduction to Game Theory</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Puppe, Rosar, Rau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2520526 Übungen zu Einführung in die Spieltheorie</td>
<td>1 SWS</td>
<td>Practice /</td>
<td>Puppe, Rosar, Rau</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7910002 Introduction to Game Theory</td>
<td></td>
<td></td>
<td>Reiß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 7900271 Introduction to Game Theory</td>
<td></td>
<td></td>
<td>Puppe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online,
🧩 Blended (On-Site/Online),
🗣 On-Site,
🗙 Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2),1 of the examination regulation. The exam takes place in the recess period and can be repeated at every ordinary examination date.

Recommendation

Knowledge from the lecture "Economics I: Microeconomics" is recommended. Furthermore, basic knowledge of mathematics and statistics is assumed.

Below you will find excerpts from events related to this course:

Introduction to Game Theory

2520525, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

The course focusses on non-cooperative game theory. It discusses models, solution concepts, and applications for simultaneous games as well as sequential games. Various solution concepts, e.g., Nash equilibrium and subgame-perfect equilibrium, are introduced along with more advanced concepts.

The assessment consists of a written exam (60 minutes) according to Section 4(2),1 of the examination regulation. The exam takes place in the recess period and can be resited at every ordinary examination date.

Recommendation: You should have passed the module [M-WIWI-101398] Introduction to Economics.

Recommendations:

Basic knowledge of mathematics and statistics is assumed.

This course offers an introduction to the theoretical analysis of strategic interaction situations. At the end of the course, students shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings.

Compulsory textbook:

Additional Literature:

Literature

Verpflichtende Literatur:

Ergänzende Literatur:
8.127 Course: Introduction to GIS for Students of Natural, Engineering and Geo Scienes [T-BGU-101681]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 6071101 | Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/U | 4 SWS | Lecture / Practice (/ Wursthorn |

Exams

| WT 23/24 | 8280101681 | Introduction to GIS for Students of Natural, Engineering and Geo Sciences | Wursthorn |
| ST 2024 | 8280101681 | Introduction to GIS for Students of Natural, Engineering and Geo Sciences | Wursthorn |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
written exam, 90 min.
8 COURSES

Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite [T-BGU-103541]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Days</th>
<th>Time</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture / Practice</td>
<td>6071101</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td></td>
<td></td>
<td>Wursthorn</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8280103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The achievement control takes place via accepted exercises.

Prerequisites
none

Recommendation
none

Annotation
none
8 COURSES

Course: Introduction to Machine Learning [T-WIWI-111028]

8.129 Course: Introduction to Machine Learning [T-WIWI-111028]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Dr. Abdolreza Nazemi

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105482 - Machine Learning and Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2540539</td>
<td>Introduction to Machine Learning</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Nazemi</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2540540</td>
<td>Übung zu Introduction to Machine Learning</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Nazemi</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900349</td>
<td>Introduction to Machine Learning (WS 2023/2024)</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900076</td>
<td>Introduction to Machine Learning</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five-point-steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Below you will find excerpts from events related to this course:

Introduction to Machine Learning

2540539, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V) On-Site

Content

- Introduction
- Data Cleaning
- Data Visualization
- Linear Regression
- Logistic Regression
- Tree-based Algorithms
- Support Vector Machine
- Shrinkage Models
- Dimensionality Reduction
- Clustering

Literature

- James, G., Witten, D., Hastie, T., and R. Tibshirani (2013). *An Introduction to Statistical Learning: with Applications in R*. Springer.
8 COURSES
Course: Introduction to Microsystem Technology - Practical Course [T-MACH-108312]

8.130 Course: Introduction to Microsystem Technology - Practical Course [T-MACH-108312]

- Responsible: Dr. Arndt Last
- Organisation: KIT Department of Mechanical Engineering
- Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events
- WT 23/24: 2143877 Introduction to Microsystem Technology - Practical Course 2 SWS Practical course / On-Site Last
- ST 2024: 2143877 Introduction to Microsystem Technology - Practical Course 2 SWS Practical course / On-Site Last

Exams
- WT 23/24: 76-T-MACH-108312 Introduction to Microsystem Technology - Practical Course Last

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
non-graded written examination

Prerequisites
none

Below you will find excerpts from events related to this course:

- V Introduction to Microsystem Technology - Practical Course 2143877, WS 23/24, 2 SWS, Language: German, Open in study portal

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

- V Introduction to Microsystem Technology - Practical Course 2143877, SS 2024, 2 SWS, Language: German, Open in study portal

Content
In the practical training includes nine experiments:
1. X-ray optics
2. UVL + REM
3. Micromixer
4. Atomic force microscopy
5. 3D-Printing
6. Light diffraction at Chromium masks
7. Moulding
8. SAW-bio-sensors
9. Nano3D-printer - material transfer of thin foils
10. Electro spinning

Each student takes part in only four experiments. The experiments are carried out at real workstations at the IMT and coached by IMT-staff.
Organizational issues
Das Praktikum findet in den Laboren des IMT am KIT-CN statt. Treffpunkt: Eingang Bau 301.
Teilnahmeanfragen an Dr. A. Last, arndt.last@kit.edu

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'
8.131 Course: Introduction to Microsystem Technology I [T-MACH-105182]

Responsible: Dr. Vlad Badilita
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2141861</th>
<th>Introduction to Microsystem Technology I</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Korvink, Badilita</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>76-T-MACH-105182</th>
<th>Introduction to Microsystem Technology I</th>
<th>Korvink, Badilita</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td>Korvink, Badilita</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏤 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
written examination (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology I
2141861, WS 23/24, 2 SWS, Language: English, Open in study portal

Literature
Mikrosystemtechnik für Ingenieure, W. Menz und J. Mohr, VCH Verlagsgesellschaft, Weinheim 2005

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
8.132 Course: Introduction to Microsystem Technology II [T-MACH-105183]

Responsible: Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2142874</td>
<td>Introduction to Microsystem Technology II</td>
<td>2</td>
<td>Lecture</td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written examination (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology II
2142874, SS 2024, 2 SWS, Language: English, Open in study portal

Content

- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Organizational issues

Topic: Grundlagen der Mikrosystemtechnik II (MST II) SS 21

Time: Thursdays 14:00 - 15:30
10.91 Redtenbacher-Hörsaal

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
8.133 Course: Introduction to Neural Networks and Genetic Algorithms [T-WIWI-111029]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105482 - Machine Learning and Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2540541</td>
<td>2</td>
<td>Introduction to Neural Networks and Genetic Algorithms</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>ST 2024 2540542</td>
<td>1</td>
<td>Übung Introduction to Neural Networks and Genetic Algorithms</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7900295</td>
<td>7900303</td>
<td>Introduction to Neural Networks and Genetic Algorithms (Nachklausur SS 2023)</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five-point-steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course. A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Below you will find excerpts from events related to this course:

Introduction to Neural Networks and Genetic Algorithms

2540541, SS 2024, 2 SWS, Language: English, Open in study portal

Lecture

Content

The course consists of a short introduction and two parts:

1. In the introduction, the biological mechanisms of neural and genetic methods are presented. Furthermore, a common framework for the learning performance evaluation of these methods in applications is introduced.
2. In the field of genetic methods, simple genetic algorithms and their variants are introduced, analyzed, and applied.
3. In the area of neural methods, the basic algorithms are presented (e.g., backpropagation) as well as their applications in data science.

Learning Objectives:

The student knows the essential algorithms, learning procedures, and methods for neural networks and genetic algorithms. They can apply these methods (e.g. in R) and evaluate their quality.

Literature

Course: Introduction to Operations Research I and II [T-WIWI-102758]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101418 - Introduction to Operations Research

Type: Written examination
Credits: 9
Grading scale: Grade to a third
Recurrence: see Annotations
Version: 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2500030</td>
<td>Computer Exercises on Introduction to Operations Research II</td>
<td>1</td>
<td>Tutorial (/🖥)</td>
<td>Dunke</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2530043</td>
<td>Introduction to Operations Research II</td>
<td>2</td>
<td>Lecture /🧩</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2530044</td>
<td></td>
<td></td>
<td>Tutorial (/🗣)</td>
<td>Dunke</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2500008</td>
<td>Computer Exercises on Introduction to Operations Research I</td>
<td>1</td>
<td>Tutorial (/🖥)</td>
<td>Dunke</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2550040</td>
<td>Introduction to Operations Research I</td>
<td>2</td>
<td>Lecture /🗣</td>
<td>Nickel</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2550043</td>
<td>Tutorials on Introduction to Operations Research I</td>
<td>2</td>
<td>Tutorial (/🗣)</td>
<td>Dunke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
<th></th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900209</td>
<td>Introduction to Operations Research I and II</td>
<td></td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.
In each term (usually in March and August), one examination is held for both courses.
The overall grade of the module is the grade of the written examination.

Prerequisites
None

Recommendation
Knowledge of Mathematics I and II is recommended, as well as programming knowledge for the software laboratory.
It is strongly recommended to attend the course Introduction to Operations Research I [2550040] before attending the course Introduction to Operations Research II [2530043].

Below you will find excerpts from events related to this course:

Introduction to Operations Research II
2530043, WS 23/24, 2 SWS, Open in study portal

Lecture (V)
Blended (On-Site/Online)
Content

Integer and combinatorial optimization: basic concepts, cutting plane methods, branch-and-bound methods, branch-and-cut methods, heuristic methods.

Nonlinear optimization: basic concepts, optimality conditions, solution methods for convex and nonconvex optimization problems.

Dynamic and stochastic models and methods: Dynamic optimization, Bellman methods, lot-sizing models and dynamic and stochastic models of inventory, queues.

Learning Objectives:

The student

- knows and describes the basic concepts of integer and combinatorial optimization, nonlinear optimization and dynamic optimization,
- knows the methods and models indispensable for a quantitative analysis,
- models and classifies optimization problems and selects appropriate solution procedures to solve simple optimization problems independently,
- validates, illustrates and interprets obtained solutions.

Literature

Introduction to Operations Research I

2550040, SS 2024, 2 SWS, Language: German, [Open in study portal]

Content

Examples for typical OR problems.

Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, game theory.

Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal and minimal cost flows in networks.

Learning objectives:

The student

- names and describes basic notions of linear programming as well as graphs and networks,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Literature

8.135 Course: Introduction to Programming with Java [T-WIWI-102735]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101581 - Introduction to Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2511000</td>
<td>Introduction to Programming with Java</td>
<td>3 SWS</td>
<td>Lecture / 🔴</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2511002</td>
<td>Tutorien zu Programmieren I: Java</td>
<td>1 SWS</td>
<td>Tutorial (</td>
<td>Zöllner, Stegmaier, Schneider, Mütsch, Polley</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2511003</td>
<td>Computer lab Introduction to Programming with Java</td>
<td>2 SWS</td>
<td></td>
<td>Zöllner, Stegmaier, Schneider, Mütsch, Polley</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 79AIFB_Prog1</td>
<td>Introduction to Programming with Java</td>
<td></td>
<td></td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>ST 2024 7900042</td>
<td>Introduction to Programming with Java</td>
<td></td>
<td></td>
<td>Zöllner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written resp. computer-based exam (60 min) according to Section 4 (2),1 of the examination regulation.

The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written resp. computer-based exam.

The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Annotation

see german version

Below you will find excerpts from events related to this course:

Introduction to Programming with Java

2511000, WS 23/24, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

The lecture “Introduction to Programming with Java” introduces systematic programming and provides essential practical basics for all advanced computer science lectures.

Based on considerations of the structured and systematic design of algorithms, the most important constructs of modern higher programming languages as well as programming methods are explained and illustrated with examples. One focus of the lecture is on teaching the concepts of object-oriented Programming. Java is used as the programming language. Knowledge of this language is required in advanced computer science lectures.

At the end of the lecture period, a written examination will be held for which admission must be granted during the semester after successful participation in the practices. The exact details will be announced in the lecture.

Learning objectives:

- Knowledge of the fundamentals, methods and systems of computer science.
- The students acquire the ability to independently solve algorithmic problems in the programming language Java, which dominates in business applications.
- In doing so, they will be able to find strategic and creative answers in finding solutions to well-defined, concrete and abstract problems.

Workload:

The total workload for this course is approximately 150 hours. For further information see German version.
Literature
8.136 Course: Introduction to Public Finance [T-WIWI-102877]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101403 - Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>Credit(s)</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2560131</td>
<td>Introduction to Public Finance</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Wigger</td>
</tr>
<tr>
<td>ST 2024</td>
<td>790fiwi</td>
<td>Introduction to Public Finance</td>
<td></td>
<td>Lecture</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>790fiwi</td>
<td>Introduction to Public Finance</td>
<td>Lecture</td>
<td>Wigger</td>
</tr>
<tr>
<td>ST 2024</td>
<td>790fiwi</td>
<td>Introduction to Public Finance</td>
<td>Lecture</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Below you will find excerpts from events related to this course:

Introduction to Public Finance
2560131, WS 23/24, 3 SWS, Language: German, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content

The course *Introduction to Public Finance* provides an overview of the fundamental issues in public economics. The first part of the course deals with normative theories about the economic role of the state in a market economy. Welfare economics theory is offered as a base model, with which alternative normative theories are compared and contrasted. Within this theoretical framework, arguments concerning efficiency and equity are developed as justification for varying degrees of economic intervention by the state. The second part of the course deals with the positivist theory of public economics. Processes of public decision making are examined and the conditions that lead to market failures resulting from collective action problems are discussed. The third part of the course examines a variety of public spending programs, including social security systems, the public education system, and programs aimed at reducing poverty. The fifth part of the course addresses the key theoretical and political issues associated with fiscal federalism.

Learning goals:

Students are able to:

- critically assess the economic role of the state in a market economy
- explain and discuss key concepts in public finance, including: public goods; economic externalities; and market failure
- explain and critically discuss competing theoretical approaches to public finance, including welfare economics and public choice theory
- explain the theory of bureaucracy according to Weber and critically assess its strengths and weaknesses
- evaluate the incentives inherent in the bureaucratic model, as well as the more recent introduction of market-oriented incentives associated with public-sector reform

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Organizational issues

Die Vorlesung wird im WS 23/24 in Hybrid-Modus angeboten: in der ersten Vorlesungswoche sowie im zweiwöchigen Rhythmus danach findet sie in Präsenz im entsprechend angegebenen Vorlesungsraum statt; in der zweiten Vorlesungswoche sowie alle zwei Wochen danach findet sie online über im ILIAS-Kurs angegebenen Zoom-Vorlesungsraum statt.
Literature
Literatur:
8.137 Course: Introduction to Stochastic Optimization [T-WIWI-106546]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101414 - Methodical Foundations of OR
- M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 2550470</td>
<td>Introduction to Stochastic Optimization</td>
<td>2 SWS</td>
<td>Lecture / 📱</td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>ST 2024 2550471</td>
<td>Übung zur Einführung in die Stochastische Optimierung</td>
<td>1 SWS</td>
<td>Practice / 📱</td>
<td>Rebennack, Kandora</td>
<td></td>
</tr>
<tr>
<td>ST 2024 2550474</td>
<td>Rechnerübung zur Einführung in die Stochastische Optimierung</td>
<td>2 SWS</td>
<td>Others (sons)</td>
<td>Rebennack, Kandora</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 7900242</td>
<td>Introduction to Stochastic Optimization</td>
<td></td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>ST 2024 7900311</td>
<td>Introduction to Stochastic Optimization</td>
<td></td>
<td>Rebennack</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes). The exam takes place in every semester.

Prerequisites
None.
8.138 Course: Investments [T-WIWI-102604]

Responsible: Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101435 - Essentials of Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2530575 | Investments | 2 SWS | Lecture / 🗣 | Uhrig-Homburg |
| ST 2024 | 2530575 | Übung zu Investments | 1 SWS | Practice / 🗣 | Uhrig-Homburg, Kargus |

Exams

| WT 23/24 | 7900054 | Investments | Uhrig-Homburg |

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination or as an open-book examination (alternative exam assessment).

A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

Knowledge of Business Administration: Finance and Accounting [2610026] is recommended.

Below you will find excerpts from events related to this course:

Literature

Weiterführende Literatur:

8.139 Course: Laboratory Production Metrology [T-MACH-108878]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Dr. Florian Stamer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2150550</th>
<th>Laboratory Production Metrology</th>
<th>3 SWS</th>
<th>Practical course / 🗣</th>
<th>Lanza, Stamer</th>
</tr>
</thead>
</table>

Exams

| ST 2024 | 76-T-MACH-108878 | Laboratory Production Metrology | Lanza, Stamer |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Alternative Test Achievement: Group presentation of 15 min at the beginning of each experiment and evaluation of the participation during the experiments and Oral Exam (15 min)

Prerequisites

none

Annotation

For organizational reasons the number of participants for the course is limited. Hence an selection process will take place. Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

Below you will find excerpts from events related to this course:
Content
During this course, students get to know measurement systems that are used in a production system. In the age of Industry 4.0, sensors are becoming more important. Therefore, the application of in-line measurement technology such as machine vision and non-destructive testing is focussed. Additionally, laboratory based measurement technologies such as computed tomography are addressed. The students learn the theoretical background as well as practical applications for industrial examples. The students use sensors by themselves during the course. Additionally, they are trained on how to integrate sensors in production processes and how to analyze measurement data with suitable software.

The following topics are addressed:

- Classification and examples for different measurement technologies in a production environment
- Machine vision with optical sensors
- Information fusion based on optical measurements
- Robot-based optical measurements
- Non-destructive testing by means of acoustic measurements
- Coordinate measurement technology
- Industrial computed tomography
- Measurement uncertainty evaluation
- Analysis of production data by means of data mining

Learning Outcomes:
The students...

- are able to name, describe and mark out different measurement technologies that are relevant in a production environment.
- are able to conduct measurements with the presented in-line and laboratory based measurement systems.
- are able to analyze measurement results and assess the measurement uncertainty of these.
- are able to deduce whether a work piece fulfills quality relevant specifications by analysing measurement results.
- are able to use the presented measurement technologies for a new task.

Workload:
regular attendance: 31,5 hours
self-study: 88,5 hours

Organizational issues

For organizational reasons the number of participants for the course is limited. Hence a selection process will take place. Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

Literature

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/). Additional reference to literature will be provided, as well.
8.140 Course: Large Diesel and Gas Engines for Ship Propulsions [T-MACH-110816]

Responsible: Dr.-Ing. Heiko Kubach

Organisation:

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2134154 | Large Diesel and Gas Engines for Ship Propulsions | 2 SWS | Lecture /🗣 | Weisser |

Legend: 🖥 Online, 🪪 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

oral exam, 20 minutes

Prerequisites

None

Below you will find excerpts from events related to this course:

Content

- Introduction and History
- Types of Ships and Propulsion Systems
- Thermodynamic
- Boosting
- Design
- Fuels
- Lubricants
- Injection of liquid Fuels
- Combustions Processes for liquid Fuels
- Injection of Gaseous Fuels
- Combustion Processes for Gaseous Fuels
- Emissions
- Integration of Engines in Ships
- Large Engines in other Applications

Organizational issues

8 COURSES
Course: Learning Factory "Global Production" [T-MACH-105783]

8.141 Course: Learning Factory "Global Production" [T-MACH-105783]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Learning Factory "Global Production"</td>
<td>4 SWS</td>
<td>/ 🧩</td>
<td>Lanza</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Learning Factory "Global Production"</td>
<td>4 SWS</td>
<td>/ 🧩</td>
<td>Lanza</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative test achievement (graded):

- Knowledge acquisition in the context of the seminar (4 achievements 20 min each) with weighting 40%.
- Interaction between participants with weighting 15%.
- Scientific colloquium (in groups of 3 students approx. 45 min each) with weighting 45%.

Prerequisites

none

Annotation
For organisational reasons, the number of participants for the course is limited to 20. As a result, a selection process will take place. Applications must be submitted via the wbk homepage (http://www.wbk.kit.edu/lernfabrik.php).
Due to the limited number of participants, advance registration is required.
Students should have previous knowledge in at least one of the following areas:

- Integrated Production Planning
- Global Production and Logistics
- Quality Management

Below you will find excerpts from events related to this course:

Learning Factory "Global Production"
2149612, WS 23/24, 4 SWS, Language: German, Open in study portal

Blended (On-Site/Online)
Content
The learning factory "Global Production" serves as a modern teaching environment for the challenges of global production. To make this challenges come alive, students can run a production of electric motors under real production conditions. The course is divided into e-learning units and presence dates. The e-learning units help to learn essential basics and to immerse themselves in specific topics (e.g. selection of location, supplier selection and planning of production networks). The focus of the presence appointments is the case-specific application of relevant methods for planning and control of production systems that are suitable for the location. In addition to traditional methods and tools to organize lean production systems (e.g. Kanban and JIT/ JIS, Line Balancing) the lecture in particular deals with site-specific quality assurance and scalable automation. Essential methods for quality assurance in complex production systems are taught and brought to practical experience by a Six Sigma project. In the area of scalable automation, it is important to find solutions for the adaption of the level of automation of the production system to the local production conditions (e.g. automated workpiece transport, integration of lightweight robots for process linking) and to implement them physically. At the same time safety concepts should be developed and implemented as enablers for human-robot collaboration.

The course also includes an excursion to the production plant for the manufacturing of electric motors of an industrial partner.

Main focus of the lecture:
- site selection
- site-specific factory planning
- site-specific quality assurance
- scalable automation
- supplier selection

Learning Outcomes:
The students are able to ...
- evaluate and select alternative locations using appropriate methods.
- use methods and tools of lean management to plan and manage production systems that are suitable for the location.
- use the Six Sigma method and apply goal-oriented process management.
- select an appropriate level of automation of the production units based on quantitative variables.
- make use of well-established methods for the evaluation and selection of suppliers.
- apply methods for planning a global production network depending on company-specific circumstances to sketch a suitable network and classify and evaluating it according to specific criteria.
- apply the learned methods and approaches with regard to problem solving in a global production environment and able to reflect their effectiveness.

Workload:
e-Learning: ~ 24 h
regular attendance: ~ 36 h
self-study: ~ 60 h

Organizational issues
Termine werden über die Institutshomepage bekanntgegeben.
Aus organisatorischen Gründen ist die Teilnehmerzahl für die Lehrveranstaltung auf 20 Teilnehmer begrenzt. Infolgedessen wird ein Auswahlprozess stattfinden. Die Bewerbung erfolgt über die Homepage des wbk (http://www.wbk.kit.edu/studium-und-lehre.php)
Aufgrund der begrenzten Teilnehmerzahl ist eine Voranmeldung erforderlich.
Die Studierenden sollten Vorkenntnisse in mindestens einem der folgenden Bereiche haben:
- Integrierte Produktionsplanung
- Globale Produktion und Logistik
- Qualitätsmanagement

For organisational reasons, the number of participants for the course is limited to 20. As a result, a selection process will take place. Applications must be submitted via the wbk homepage (http://www.wbk.kit.edu/studium-und-lehre.php).
Due to the limited number of participants, advance registration is required.
Students should have previous knowledge in at least one of the following areas:
- Integrated Production Planning
- Global Production and Logistics
- Quality Management
Literature
Medien:

Media:
E-learning platform ilias, powerpoint, photo protocol. The media are provided through ilias (https://ilias.studium.kit.edu/).
8.142 Course: Logistics and Supply Chain Management [T-WIWI-102870]

Responsible: Prof. Dr. Frank Schultmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101437 - Industrial Production I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Logistics and Supply Chain Management</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Schultmann, Rosenberg</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Logistics and Supply Chain Management</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Schultmann</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Logistics and Supply Chain Management</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Schultmann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☠ Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-MACH-110771 - Logistics and Supply Chain Management must not have been started.

Below you will find excerpts from events related to this course:

Logistics and Supply Chain Management

2581996, SS 2024, 2 SWS, Language: English, Open in study portal

Lecture (V)
On-Site

Content

Students are introduced to the methods and tools of logistics and supply chain management. They students learn the key terms and components of supply chains together with key economic trade-offs. In detail, students gain knowledge of decisions in supply chain management, such as facility location, supply chain planning, inventory management, pricing and supply chain cooperation. In this manner, students will gain knowledge in analyzing, designing and steering of decisions in the domain of logistics and supply chain management.

- Introduction: Basic terms and concepts
- Facility location and network optimization
- Supply chain planning I: flexibility
- Supply chain planning II: forecasting
- Inventory management & pricing
- Supply chain coordination I: the Bullwhip-effect
- Supply chain coordination II: double marginalization
- Supply chain risk management

Literature

Wird in der Veranstaltung bekannt gegeben.
8.143 Course: Logistics and Supply Chain Management [T-MACH-110771]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-105298 - Logistics and Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2118078 | Logistics and Supply Chain Management | 4 SWS | Lecture / 🗣 | Furmans, Alicke |

Exams

| ST 2024 | 76-T-MACH-110771 | Logistics and Supply Chain Management | Furmans |

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Competence Certificate

The success control takes place in the form of an examination performance of a different kind. This is composed as follows:

- 50% assessment of a written examination (60 min) during the semester break
- 50% assessment of an oral examination (20 min) during the semester break

To pass the examination, both examination performances must be passed.

Prerequisites

The course T-WIWI-102870 "Logistics and Supply Chain Management" must not have been selected.

Annotation

The brick cannot be taken if one of the bricks "T-MACH-102089 – Logistics - Organisation, Design and Control of Logistic Systems" and "T-MACH-105181 – Supply Chain Management" has been taken.

Below you will find excerpts from events related to this course:

Content

In the lecture "Logistics and Supply Chain Management", comprehensive and well-founded fundamentals of crucial issues in logistics and supply chain management are presented. Furthermore, the interaction of different design elements of supply chains is emphasized. For this purpose, both qualitative and quantitative models are presented and applied. Additionally, methods for mapping and evaluating logistics systems and supply chains are described. The contents of the lecture are deepened in exercises and case studies and comprehension is partially reviewed in case studies. The contents will be illustrated, among other things, on the basis of supply chains in the automotive industry.

Among others, the following topics are covered:

- Inventory Management
- Forecasting
- Bullwhip Effect
- Supply Chain Segmentation and Collaboration
- Key Performance Indicators
- Supply Chain Risk Management
- Production Logistics
- Location Planning
- Route Planning

It is intended to provide an interactive format in which students can also contribute (and work alone or in groups). Since logistics and supply chain management (also in times during and after Corona) requires working in an international environment and therefore many terms are derived from English, the lecture will be held in English.
8.144 Course: Machine Tools and High-Precision Manufacturing Systems [T-MACH-110963]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101286 - Machine Tools and Industrial Handling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2149910</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>German</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-110963-WING</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>German</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-110963-WING</td>
<td>Machine Tools and High-Precision Manufacturing Systems</td>
<td>German</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam (approx. 45 minutes)

Prerequisites

T-MACH-102158 - Machine Tools and Industrial Handling must not be commenced.
T-MACH-109055 - Machine Tools and Industrial Handling must not be commenced.
T-MACH-110962 - Machine Tools and High-Precision Manufacturing Systems must not be commenced.

Below you will find excerpts from events related to this course:

Machine Tools and High-Precision Manufacturing Systems

2149910, WS 23/24, 6 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

On-Site
Content
The lecture gives an overview of the construction, use and application of machine tools and high-precision manufacturing systems. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools and high-precision manufacturing systems is conveyed. First, the main components of the systems are systematically explained and their design principles as well as the integral system design are discussed. Subsequently, the use and application of machine tools and high-precision manufacturing systems will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0 and artificial intelligence.
Guest lectures from industry round off the lecture with insights into practice.

The individual topics are:

- Structural components of dynamic manufacturing Systems
- Feed axes: High-precision positioning
- Spindles of cutting machine Tools
- Peripheral Equipment
- Machine control unit
- Metrological Evaluation
- Maintenance strategies and condition Monitoring
- Process Monitoring
- Development process for machine tools and high-precision manufacturing Systems
- Machine examples

Learning Outcomes:
The students ...

- are able to assess the use and application of machine tools and high-precision manufacturing systems and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of machine tools and high-precision manufacturing systems (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of machine tools and high-precision manufacturing systems.
- are capable of selecting and evaluating machine tools and high-precision manufacturing systems according to technical and economic criteria.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING/TVWL:
regular attendance: 63 hours
self-study: 207 hours

Organizational issues

Lectures on Mondays and Wednesdays, tutorial on Thursdays.
The tutorial dates will announced in the first lecture.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.
The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.145 Course: Macroeconomic Theory [T-WIWI-109121]

Responsible: Prof. Dr. Johannes Brumm
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101501 - Economic Theory
- M-WIWI-101668 - Economic Policy I
- M-WIWI-106472 - Advanced Macroeconomics

Type
 - Written examination
Credits
 - 4.5
Grading scale
 - Grade to a third
Recurrence
 - Each winter term
Version
 - 2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2560404</td>
<td>Macroeconomic Theory</td>
<td>2 SWS</td>
<td>Brumm, Krause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>2560405</td>
<td>Übung zu Macroeconomic Theory</td>
<td>1 SWS</td>
<td>Pegorari</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>7900264</td>
<td>Macroeconomic Theory</td>
<td>Brumm</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Lecture (V)

- **Macroeconomic Theory**
 - Code: 2560404
 - WS 23/24
 - 2 SWS
 - Language: English
 - Open in study portal

Content

This course introduces a modern approach to macroeconomics by building on microeconomic principles. To be able to rigorously address key macroeconomic questions a general framework based on intertemporal decision making is introduced. Starting by the principles of consumer and firm behavior, this framework is successively expanded by introducing market imperfections, monetary factors as well as international trade. With this framework at hand students are able to analyze labor market policies, government deficits, monetary policy, trade policy, and other important macroeconomic problems. Throughout the course, we not only point out the power of theory but also its limitations.

Literature

Literatur und Skripte werden in der Veranstaltung angegeben.
8.146 Course: Macro-Finance [T-WIWI-106194]

Responsible: Prof. Dr. Maxim Ulrich

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103120 - Financial Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
The grade is based on an exam. The exam covers all the material that is taught in the current semester. The exam takes place in the last week of the lecture-free period. Students who fail the exam are allowed to retake it in the following semester (last week of the respective lecture-free period).

Prerequisites
None.

Recommendation
None
8.147 Course: Management Accounting 1 [T-WIWI-102800]

Responsible: Prof. Dr. Marcus Wouters

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101498 - Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2579900</td>
<td>Management Accounting 1</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>English</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2579901</td>
<td>Tutorial Management Accounting 1 (Bachelor)</td>
<td>2</td>
<td>Practice / 🗣</td>
<td></td>
<td>Dickemann</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2579902</td>
<td>Tutorial Management Accounting 1 (Master)</td>
<td>2</td>
<td>Practice / 🗣</td>
<td></td>
<td>Dickemann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>79-2579900-B</td>
<td>Management Accounting 1 (Bachelor)</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>English</td>
<td>Wouters</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79-2579900-M</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>English</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2024</td>
<td>79-2579900-B</td>
<td>Management Accounting 1 (Bachelor)</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>English</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2024</td>
<td>79-2579900-M</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>English</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam (120 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Recommendation

We recommend that you take part in our exercise for the lecture.

Annotation

The exercise is offered separately for Bachelor’s students as well as for students in the Master’s transfer and Master’s program.

Note for exam registration:

- Bachelor students: 79-2579900-B Management Accounting 1 (Bachelor)
- Students in the Master’s transfer and Master’s program: 79-2579900-M Management Accounting 1 (Master’s transfer and Master)

Below you will find excerpts from events related to this course:

- **Management Accounting 1**
 - Code: 2579900, SS 2024, 2 SWS, Language: English, Open in study portal
 - Lecture (V)
 - Online
Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:

- Students have an understanding of theory and applications of management accounting topics.
- They can use financial information for various purposes in organizations.

Examination:

- The assessment consists of a written exam (120 minutes) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:

- The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

- In addition, several papers that will be available on ILIAS.
8.148 Course: Management Accounting 2 [T-WIWI-102801]

Responsible:	Prof. Dr. Marcus Wouters
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101498 - Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Type</th>
<th>Details</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2579903</td>
<td>Management Accounting 2</td>
<td>Lecture / Online</td>
<td>2 SWS</td>
<td>Wouters</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2579904</td>
<td>Tutorial Management Accounting 2 (Bachelor)</td>
<td>Practice / On-Site</td>
<td>2 SWS</td>
<td>Letmathe</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2579905</td>
<td>Tutorial Management Accounting 2 (Master)</td>
<td>Practice / On-Site</td>
<td>2 SWS</td>
<td>Letmathe</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Exam Details</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Management Accounting 2 (Bachelor)</td>
<td>Wouters</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Management Accounting 2 (Mastervorzug und Master)</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Management Accounting 2 (Bachelor)</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Management Accounting 2 (Mastervorzug und Master)</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a written exam (120 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

None

Recommendation

It is recommended:

- to take part in the course "Management Accounting1" before this course
- participation in the exercise for the lecture "Management Accounting 2"

Annotation

The exercise for the lecture is offered separately for Bachelor's students as well as for students in the Master's transfer and Master's program.

Note for exam registration: Bachelor students:

- 79-2579903-B Management Accounting 2 (Bachelor)
- Students in the Master's transfer and Master's program: 79-2579903-M Management Accounting 2 (Master's transfer and Master)

Below you will find excerpts from events related to this course:

Management Accounting 2

2579903, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)
Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA2 are: cost estimation, product costing and cost allocation, financial performance measures, transfer pricing, strategic performance measurement systems.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:
- Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Recommendations:
- It is recommended to take part in the course "Management Accounting 1" before this course.

Examination:
- The assessment consists of a written exam (120 min) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:
- The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
- Zusätzlich werden Artikel auf ILIAS zur Vergügung gestellt.

V Tutorial Management Accounting 2 (Bachelor)
2579904, WS 23/24, 2 SWS, Language: English, Open in study portal
Practice (Ü) On-Site

Content
see ILIAS

V Tutorial Management Accounting 2 (Master)
2579905, WS 23/24, 2 SWS, Language: English, Open in study portal
Practice (Ü) On-Site

Content
see ILIAS
8.149 Course: Management and Marketing [T-WWI-111594]

Responsible: Prof. Dr. Martin Klarmann
Prof. Dr. Hagen Lindstädt
Prof. Dr. Petra Nieken
Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of: M-WWI-105768 - Management and Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2600023</td>
<td>Management</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Nieken, Lindstädt, Terzidis</td>
</tr>
<tr>
<td>Lecture</td>
<td>2610026</td>
<td>Marketing</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>7900012</td>
<td>Management and Marketing</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Nieken, Terzidis, Klarmann</td>
</tr>
<tr>
<td>Lecture</td>
<td>7900184</td>
<td>Management and Marketing</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Nieken, Terzidis, Klarmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written exam on the two courses "Management" and "Marketing". The examination is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Marketing

<table>
<thead>
<tr>
<th>Code</th>
<th>WS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2610026</td>
<td>2</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Literature

Ausführliche Literaturhinweise werden in den Materialen zur Vorlesung gegeben.
8 COURSES

Course: Managing Organizations [T-WIWI-102630]

8.150 Course: Managing Organizations [T-WIWI-102630]

Responsible: Prof. Dr. Hagen Lindstädt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101425 - Strategy and Organization
M-WIWI-101513 - Human Resources and Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2577902</td>
<td>Managing Organizations</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900049</td>
<td>Managing Organizations</td>
<td>Lindstädt</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900066</td>
<td>Managing Organizations</td>
<td>Lindstädt</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Managing Organizations

2577902, WS 23/24, 2 SWS, Language: German, Open in study portal
Content
This course enables participants to make a sound assessment of existing organizational structures and regulations. Students learn concepts and models for designing organizational structures, regulating organizational processes, and managing organizational change.

Through intensive exposure to real-world case studies, students are encouraged to learn and apply strategic actions in real-world business settings. The course features an action-oriented approach and provides students with a realistic understanding of the possibilities and limitations of rational design approaches.

Content in Keywords:
- Fundamentals of organizational management: fundamental concepts and theoretical background knowledge
- Management of organizational structures and processes: Corporate headquarters, departmental organization, instruction structure and incentive systems
- Ideal organizational structures: organic vs. mechanistic, Mintzberg’s types, relationship to strategy and 7S model
- Management of organizational change (change management): Change processes within an organization, management of revolutionary change

Structure:
Lectures in the course are available to students online as recordings, while class dates are reserved for active discussion of real-world case studies.

Learning Objectives:
Upon completion of the course, students will be able to,
- critically evaluate existing organizational structures and regulations
- compare alternative structural options in a practical setting and evaluate and interpret their effectiveness and efficiency
- analyze and evaluate change processes in organizational management
- apply theoretical knowledge in practical situations

Recommendations:
None.

Workload:
- Total workload for 3.5 credit points: approx. 105 hours
- Attendance time: 30 hours
- Self-study: 75 hours

Verification:
The assessment of success takes place in the form of a written examination (60min.) (according to §4(2), 1 SPO) at the beginning of the lecture-free period of the semester. The examination is offered every semester and can be repeated at any regular examination date.
A bonus can be earned through successful participation in the exercise. If the grade on the written exam is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the lecture.

Literature

Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.
8.151 Course: Managing the Marketing Mix [T-WIWI-102805]

Responsible: Prof. Dr. Martin Klarmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101424 - Foundations of Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2571152 | Managing the Marketing Mix | 2 SWS | Lecture / 🗣 | Klarmann |
| ST 2024 | 2571153 | Übung zu Marketing Mix (Bachelor) | 1 SWS | Practice / 🗣 | Gerlach, Daumann |

Exams

| WT 23/24 | 7900061 | Managing the Marketing Mix | Klar mann |
| ST 2024 | 7900023 | Managing the Marketing Mix | Klarmann |

Competence Certificate
The assessment of success takes place through the preparation and presentation of a case study (max. 30 points) as well as a written exam with additional aids in the sense of an open book exam (max. 60 points). In total, a maximum of 90 points can be achieved in the course. Further details will be announced during the lecture.

Prerequisites
None

Annotation
The course is compulsory in the module "Foundations of Marketing". For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:

Managing the Marketing Mix
2571152, SS 2024, 2 SWS, Language: German, Open in study portal

Content
The content of this course concentrates on the elements of the marketing mix. Therefore the main chapters are brand management, pricing, promotion and sales management.

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu). This course is compulsory within or the module "Foundations of Marketing" and must be examined.

Learning objectives:

- student
 - know the meaning of the branding, the brand positioning and the possibilities of the brand value calculation
 - understand the price behavior of customers and can apply this knowledge to the practice
 - know different methods for price determination (conjoint analysis, cost-plus determination, target costing, customer surveys, bidding procedures) and price differentiation
 - are able to name and explain the relevant communication theories
 - can identify crisis situations and formulate appropriate response strategies
 - can name and judge different possibilities of the Intermediaplanung
 - know various design elements of advertising communication
 - understand the measurement of advertising impact and can apply it
 - know the basics of sales organization
 - are able to evaluate basic sales channel decisions

Workload:
The total workload for this course is approximately 135.0 hours.
Literature
8.152 Course: Manufacturing Measurement Technology [T-ETIT-106057]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-106581 - Measurement, Control, and Manufacturing Measurement Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Fertigungsmesstechnik</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Heizmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Manufacturing Measurement Technology</td>
<td></td>
<td></td>
<td>Heizmann</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Manufacturing Measurement Technology</td>
<td></td>
<td></td>
<td>Heizmann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled
8.153 Course: Manufacturing Technology [T-MACH-102105]

Responsible: Prof. Dr.-Ing. Volker Schulze
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101276 - Manufacturing Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Exam Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2149657</td>
<td>Manufacturing Technology</td>
<td>6</td>
<td>Lecture / Practice (/)</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>Schulze</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Competence Certificate
Written Exam (180 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Manufacturing Technology
2149657, WS 23/24, 6 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)
Blended (On-Site/Online)
Content
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:

- Quality control
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming, plastics engineering)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment
- Process chains in manufacturing

This lecture provides an excursion to an industry company.

Learning Outcomes:
The students ...

- are capable to specify the different manufacturing processes and to explain their functions.
- are able to classify the manufacturing processes by their general structure and functionality according to the specific main groups.
- have the ability to perform a process selection based on their specific characteristics.
- are enabled to identify correlations between different processes and to select a process regarding possible applications.
- are qualified to evaluate different processes regarding specific applications based on technical and economic aspects.
- are experienced to classify manufacturing processes in a process chain and to evaluate their specific influence on surface integrity of workpieces regarding the entire process chain.

Workload:
regular attendance: 63 hours
self-study: 177 hours

Organizational issues
Vorlesungstermine montags und dienstags, Übungstermine mittwochs.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literature
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
8.154 Course: Material Science II for Business Engineers [T-MACH-102079]

Responsible: Dr.-Ing. Susanne Wagner

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101261 - Emphasis in Fundamentals of Engineering
- M-MACH-101262 - Emphasis Materials Science
- M-WIWI-101839 - Additional Fundamentals of Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2126782</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Material Science II</td>
<td></td>
<td>Wagner, Schell, Bucharsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Material Science II for Business Engineers</td>
<td>2 SWS</td>
<td>Wagner, Schell, Bucharsky</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🥊 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
The assessment consists of a written examination (150 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the winter term is carried out by a written or oral exam.

Prerequisites
The module Material Science has to be completed beforehand.

Below you will find excerpts from events related to this course:

Materials Science II for Business Engineers

- 2126782, SS 2024, 2 SWS, Language: German, Open in study portal

Literature

Weiterführende Literatur:

8.155 Course: Materials Science I [T-MACH-102078]

Responsible: Dr.-Ing. Susanne Wagner
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101260 - Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Responsible</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2125760</td>
<td>Materials Science I</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Responsible</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102078</td>
<td>Materials Science I</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Wagner, Schell, Bucharsky</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102078</td>
<td>Materials Science I</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Wagner, Schell, Bucharsky</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺️ On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written examination (150 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam.

Prerequisites
None

Below you will find excerpts from events related to this course:

Materials Science I

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Responsible</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2125760</td>
<td>Materials Science I</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Wagner</td>
<td></td>
</tr>
</tbody>
</table>

Literature

Weiterführende Literatur:

8.156 Course: Mathematics I - Final Exam [T-MATH-111493]

Responsible:
- Prof. Dr. Daniel Hug
- Prof. Dr. Günter Last
- Dr. Franz Nestmann
- PD Dr. Steffen Winter

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-105754 - Mathematics 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>00027</td>
<td>Mathematics I - Final Exam</td>
<td>Nestmann, Last, Winter</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7700050</td>
<td>Mathematics I - Final Exam</td>
<td>Winter, Nestmann, Last</td>
</tr>
</tbody>
</table>
8.157 Course: Mathematics I - Midterm Exam [T-MATH-111492]

Responsible:
Prof. Dr. Daniel Hug
Prof. Dr. Günter Last
Dr. Franz Nestmann
PD Dr. Steffen Winter

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-105754 - Mathematics 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Mathematics I - Midterm Exam</td>
<td>Nestmann, Last, Winter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Mathematics I - Midterm Exam</td>
<td>Winter, Nestmann, Last</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.158 Course: Mathematics II - Final Exam [T-MATH-111496]

Responsible: Prof. Dr. Daniel Hug
Prof. Dr. Günter Last
Dr. Franz Nestmann
PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics

Part of: M-MATH-105756 - Mathematics 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>00021</th>
<th>Mathematics II - Final Exam</th>
<th>Nestmann, Winter, Last</th>
</tr>
</thead>
</table>
8.159 Course: Mathematics II - Midterm Exam [T-MATH-111495]

Responsible: Prof. Dr. Daniel Hug
Prof. Dr. Günter Last
Dr. Franz Nestmann
PD Dr. Steffen Winter

Organisation: KIT Department of Mathematics

Part of: M-MATH-105756 - Mathematics 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| WT 23/24 | 00020 | Mathematics II - Midterm Exam | Nestmann, Winter, Last |

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
Course: Mathematics III - Final Exam [T-MATH-111498]

Responsible:
- Prof. Dr. Daniel Hug
- Prof. Dr. Günter Last
- Dr. Franz Nestmann
- PD Dr. Steffen Winter

Organisation:
- KIT Department of Mathematics

Part of:
- M-MATH-105757 - Mathematics 3

Type
- Written examination

Credits
- 4

Grading scale
- Grade to a third

Version
- 1

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
<th>Exam Code</th>
<th>Exam Name</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
<td>6700051</td>
<td>Mathematics III - Final Exam</td>
<td>Nestmann, Winter, Last</td>
</tr>
<tr>
<td>Written</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
<td>7700064</td>
<td>Mathematics III - Final Exam</td>
<td>Nestmann, Winter, Last</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
8.161 Course: Measurement and Control Technology [T-ETIT-112852]

Responsible: Prof. Dr.-Ing. Michael Heizmann
Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-106581 - Measurement, Control, and Manufacturing Measurement Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of success takes place in the form of a written examination lasting 120 minutes. The module grade is the grade of the written examination.

Prerequisites

none
8.162 Course: Mechanical Design A [T-MACH-112984]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106527 - Mechanical Design A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Matthiesen, Düser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Mechanical Design A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>76T-MACH-112984</td>
<td>Mechanical Design A</td>
<td>Matthiesen, Düser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam with a duration of 90 Minutes

Prerequisites

Admission to the exam only with successful completion of Workshop Mechanical Design A (T-MACH-112981)

Recommendation

None

Annotation

Students are familiar with the basic machine elements of technical systems and are able to analyze them in a system context

Below you will find excerpts from events related to this course:

V Mechanical Design A
2145170, WS 23/24, 3 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ)

Content

Students are introduced to fundamental topics in Mechanical Design A. The focus is on the analysis of existing systems and the development of knowledge for fundamental elements and functionality of technical systems. The course is divided into the following topics:

- Springs
- Technical systems
- Bearings
- Seals
- Component connection
- Gearbox

Literature

- Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
8.163 Course: Mechanical Design A, Workshop [T-MACH-112981]

Responsible: Prof. Dr.-Ing. Sven Matthiesen
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106527 - Mechanical Design A

Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Mechanical Design A - Workshop</td>
<td>1 SWS</td>
<td>Practical course / Düser, Matthiesen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Mechanical Design A, Workshop</td>
<td>Düser, Matthiesen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Concomitant to the lecture, a workshop with 3 workshop sessions takes place over the semester. During the workshop the students are divided into groups and their mechanical design knowledge will be tested during a colloquium at the beginning of every single workshop session. The attendance is mandatory and will be controlled.

The pass of the colloquia and the process of the workshop task are required for the successful participation.

Prerequisites

None

Recommendation

None

Annotation

None

Below you will find excerpts from events related to this course:

Mechanical Design A - Workshop

2145171, WS 23/24, 1 SWS, Language: German, Open in study portal

Content

In addition to the MD A lecture, the students are familiarized with the design process in a series of three workshops. The focus here is on application-oriented learning and understanding. For example, the students independently disassemble and assemble small demonstrator systems and thus gain a better understanding of the relevant problems in the field of mechanical design.

Literature

- Grundlagen von Maschinenelementen für Antriebsaufgaben; Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
8.164 Course: Mechatronical Systems and Products (mach/etit/wiwi) [T-MACH-112647]

| Responsible: | Prof. Dr.-Ing. Sören Hohmann
	Prof. Dr.-Ing. Sven Matthiesen
Organisation:	KIT Department of Mechanical Engineering
Part of:	M-MACH-106236 - Mechatronic Product Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Module</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Matthiesen, Hohmann</td>
<td></td>
</tr>
<tr>
<td>2303003</td>
<td></td>
<td>Exercises for 2303161</td>
<td>Mechatronical Systems and Products</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture / 🌐</td>
<td>Matthiesen, Hohmann</td>
<td></td>
</tr>
<tr>
<td>2303161</td>
<td></td>
<td>Mechatronical Systems and Products</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam (60 min)
8.165 Course: Metal Forming [T-MACH-105177]

Responsible: Prof. Dr.-Ing. Thomas Herlan

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Credits</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2 SWS</td>
<td>Metal Forming</td>
<td>Lecture</td>
<td>On-Site</td>
<td>Herlan</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105177</td>
<td>Metal Forming</td>
<td></td>
<td></td>
<td>Herlan</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150681</td>
<td>Metal Forming</td>
<td>SWS</td>
<td>On-Site</td>
<td>Herlan</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, ❌ Cancelled
Content
At the beginning of the lecture the basics of metal forming are briefly introduced. The focus of the lecture is on massive forming (forging, extrusion, rolling) and sheet forming (car body forming, deep drawing, stretch drawing). This includes the systematic treatment of the appropriate metal forming Machines and the corresponding tool technology. Aspects of tribology, as well as basics in material science and aspects of production planning are also discussed briefly. The plastic theory is presented to the extent necessary in order to present the numerical simulation method and the FEM computation of forming processes or tool design. The lecture will be completed by product samples from the forming technology.

The topics are as follows:

- Introduction and basics
- Hot forming
- Metal forming machines
- Tools
- Metallographic fundamentals
- Plastic theory
- Tribology
- Sheet forming
- Extrusion
- Numerical simulation

Learning Outcomes:
The students ...

- are able to reflect the basics, forming processes, tools, Machines and equipment of metal forming in an integrated and systematic way.
- are capable to illustrate the differences between the forming processes, tools, machines and equipment with concrete examples and are qualified to analyze and assess them in terms of their suitability for the particular application.
- are also able to transfer and apply the acquired knowledge to other metal forming problems.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Vorlesungstermine freitags, wöchentlich.
Die konkreten Termine werden in der ersten Vorlesung bekannt gegeben und auf der Institutshomepage und ILIAS veröffentlicht.

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxisseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
8.166 Course: Microactuators [T-MACH-101910]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none

Competence Certificate
written exam, 60 min.

Below you will find excerpts from events related to this course:

Microactuators
2142881, SS 2024, 2 SWS, Language: German, Open in study portal

Content
- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications

The lecture includes amongst others the following topics:

- Microelectromechanical systems: linear actuators, microrelais, micromotors
- Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
- Microrobotics: Microgrippers, polymer actuators (smart muscle)
- Information technology: Optical switches, mirror systems, read/write heads

Literature
- Folienskript "Mikroaktorik"
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
8.167 Course: Microeconometrics [T-WIWI-112153]

Responsible: Prof. Dr. Fabian Krüger
Organisation: KIT Department of Economics and Management
Part of:
 M-WIWI-101599 - Statistics and Econometrics
 M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Events**
 - ST 2024 2500012 Tutorial in Microeconometrics 2 SWS Practice / Krüger, Eberl
 - ST 2024 2500032 Microeconometrics 2 SWS Lecture / Krüger, Eberl

Competence Certificate
The assessment consists of a written examination (60 minutes). A bonus can be acquired by successful completion of an assignment (written report + short in-class presentation) during the semester. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4).

Prerequisites
None

Recommendation
Students are expected to have a good working knowledge of the linear regression model (e.g. by having attended the course 'Volkswirtschaftslehre III: Einführung in die Ökonometrie', or attending it in the same semester as 'Microeconometrics').

Annotation
The course will be offered in the summer semester 2024.

Below you will find excerpts from events related to this course:

Microeconometrics
2500032, SS 2024, 2 SWS, Language: English, Open in study portal

Content
Microeconometrics is concerned with modeling data from an individual ('micro') unit like a person, household or firm. The response variables of interest are often discrete. For example, a person's type of employment may be coded as a binary variable (e.g. working in IT sector versus not working in IT sector), and a person's choice of transportation mode can be cast as a multinomial variable (e.g. bike, train, car, or other). These examples differ from the basic econometric setting of a continuous response variable, and require nonlinear regression modeling.

The course first introduces maximum likelihood estimation which is particularly useful in microeconometrics. We then discuss econometric models for various types of response variables (binary, ordered, multinomial, censored), as well as methods for estimation and model evaluation. Throughout the course, implementation via R software plays an important role.

Prerequisites: Course participants are expected to have a good working knowledge of the linear regression model (e.g. by having attended the course 'Volkswirtschaftslehre III: Einführung in die Ökonometrie', or attending it in the same semester as 'Microeconometrics').

Literature

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
Competence Certificate

The assessment consists of an oral exam (45 min) taking place in the recess period. The exam takes place in every semester. Retakes are offered at every ordinary examination date.

Prerequisites

none

Recommendation

Knowledge in Fluid Power Systems is required. It is recommended to attend the course Fluid Power Systems [2114093] beforehand.

Annotation

After completion of the course the students have knowledge of:

- a wide range of mobile machines
- operation modes and working cycles of important mobile machines
- selected subsystems and components

Content:

- Introduction of the required components and machines
- Basics and structure of mobile machines
- Practical insight in the development techniques

Below you will find excerpts from events related to this course:

Mobile Machines

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2114073</td>
<td>Oral examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legends: Online, Blended (On-Site/Online), On-Site, Cancelled

Content:

- Introduction of the required components and machines
- Basics of the structure of the whole system
- Practical insight in the development techniques

Knowledge in Fluid Power is required.

Recommendations:

It is recommended to attend the course Fluid Power Systems [2114093] beforehand.

- regular attendance: 42 hours
- self-study: 184 hours
8.169 Course: Mobility and Infrastructure [T-BGU-101791]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-101067 - Mobility and Infrastructure

Type
- **Written examination**

Credits
- 9

Grading scale
- Grade to a third

Recurrence
- Each term

Version
- 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Module</th>
<th>Type</th>
<th>Organisation</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 6200404</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Spatial Planning and Planning Law</td>
<td>Written examination</td>
<td>Wilske</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2024 6200405</td>
<td>1 SWS</td>
<td>Practice / 🧩</td>
<td>Exercises to Spatial Planning and Planning Law</td>
<td>Written examination</td>
<td>Wilske, Mitarbeiter/innen</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2024 6200406</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Transportation Systems</td>
<td>Written examination</td>
<td>Vortisch</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2024 6200407</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Exercises to Transportation Systems</td>
<td>Written examination</td>
<td>Vortisch, Mitarbeiter/innen</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2024 6200408</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Design Basics in Highway Engineering</td>
<td>Written examination</td>
<td>Plachkova-Dzhurova, Zimmermann</td>
<td>Each term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2024 6200409</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Exercises to Design Basics in Highway Engineering</td>
<td>Written examination</td>
<td>Plachkova-Dzhurova, Zimmermann</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams
- **Exams**
- **WT 23/24 8234101791**
 Mobility and Infrastructure
 Type: Written examination, 150 min.

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
- Written exam, 150 min.

Prerequisites
- None

Recommendation
- For students from the KIT-Department of Economics and Management it is recommended to take part in the exercises.

Annotation
- None

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101413 - Applications of Operations Research

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2550490</td>
<td>Modellieren und OR-Software: Einführung</td>
<td>Practical course / Blended (On-Site/Online)</td>
<td>Nickel, Linner, Pomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900073</td>
<td>Modeling and OR-Software: Introduction</td>
<td>Nickel</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900153</td>
<td>Modeling and OR-Software: Introduction</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment is a written examination. The examination is held in every semester. The prerequisite can only be obtained in semesters in which the course exercises are offered.

Prerequisites
Prerequisite for admission to the exam is the successful participation in the exercises. This includes the processing and presentation of exercises.

Recommendation

Annotation
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The lecture is offered in every term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Modellieren und OR-Software: Einführung

2550490, SS 2024, 3 SWS, Language: German, **Open in study portal**

Content
After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation, ...), the software IBM ILOG CPLEX Optimization Studio and the corresponding modeling language OPL will be discussed which can be used to solve OR problems on a computer-aided basis. Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.

Organizational issues
Die Teilnehmerzahl für diese Veranstaltung ist begrenzt.
Die Bewerbung erfolgt über das Wiwi-Portal.
Der Bewerbungszeitraum ist vom 01.03.24 bis zum 18.03.24.
8.171 Course: Nonlinear Optimization I [T-WIWI-102724]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101414 - Methodical Foundations of OR
- M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events Type</th>
<th>Course</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Nonlinear Optimization I</td>
<td>2 SWS</td>
<td></td>
<td>Stein</td>
</tr>
<tr>
<td>Lecture</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td>Practice</td>
<td></td>
<td>Stein, Schwarze</td>
</tr>
</tbody>
</table>

Exams

| WT 23/24 | 7900001_WS2324_HK | Nonlinear Optimization I | Stein |
| ST 2024 | 7900202_SS2024_NK | Nonlinear Optimization I | Stein |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ⚰ Canceled

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The exam takes place in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites

The module component exam T-WIWI-103637 "Nonlinear Optimization I and II" may not be selected.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

2550111, WS 23/24, 2 SWS, Language: German, [Open in study portal]

Lecture (V) On-Site

Content

The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Literatur

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
8.172 Course: Nonlinear Optimization I and II [T-WIWI-103637]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101414 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written exam</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Nonlinear Optimization I</th>
<th>2 SWS</th>
<th>Lecture / Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Experiences Nonlinear Optimization I + II</td>
<td>2 SWS</td>
<td>Practice / Stein, Schwarz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Nonlinear Optimization II</td>
<td>2 SWS</td>
<td>Lecture / Stein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Nonlinear Optimization I and II</th>
<th>Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900003_WS2324_HK</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900204_SS2024_NK</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The exam takes place in the semester of the lecture and in the following semester.

Prerequisites
None.

Annotation
Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I
2550111, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Literature

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Nonlinear Optimization II
2550113, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student
- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Literature

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
Course: Nonlinear Optimization II [T-WIWI-102725]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101414 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2550112</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td>Practice / 📝</td>
<td>Stein, Schwarze</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2550113</td>
<td>Nonlinear Optimization II</td>
<td>Lecture / 📝</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900002_WS2324_HK</td>
<td>Nonlinear Optimization II</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900203_SS2024_NK</td>
<td>Nonlinear Optimization II</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The exam takes place in the semester of the lecture and in the following semester.

The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Prerequisites

None.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization II

2550113, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site

Content

The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.
Literature

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
8.174 Course: Novel Actuators and Sensors [T-MACH-102152]

Responsible: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2141865</td>
<td>Novel actuators and sensors</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>Lecture</td>
<td>Kohl, Sommer</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 60 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Novel actuators and sensors

2141865, WS 23/24, 2 SWS, Language: German, Open in study portal

Literature

- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
8.175 Course: Optimization under Uncertainty [T-WIWI-106545]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101413 - Applications of Operations Research
M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer/Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2550464</td>
<td>Optimization Under Uncertainty</td>
<td>Rebennack</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture /🧩</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2550465</td>
<td>Übungen zu Optimierungsansätze unter Unsicherheit</td>
<td>Rebennack</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice /🗣</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2550466</td>
<td>Others (sons)</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900240</td>
<td>Optimization under Uncertainty</td>
<td>Rebennack</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900355</td>
<td>Optimization under Uncertainty</td>
<td>Rebennack</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900309</td>
<td>Optimization under Uncertainty</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites
None.
Course: Optoelectronic Components [T-ETIT-101907]

Responsible: Prof. Dr. Wolfgang Freude
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 2309486 | Optoelectronic Components | 2 SWS | Lecture / 🖼️ | Randel |
| ST 2024 2309487 | Optoelectronic Components (Tutorial) | 1 SWS | Practice / 🖼️ | Randel |

Exams

| WT 23/24 7309486 | Optoelectronic Components | Freude |
| ST 2024 7309486 | Optoelectronic Components | Randel |

Prerequisites

none

Legend: 🖼️ Online, 🔄 Blended (On-Site/Online), 🗦 On-Site, ⌚️ Cancelled
8 COURSES

Course: Personnel Policies and Labor Market Institutions [T-WIWI-102908]

8.177 Course: Personnel Policies and Labor Market Institutions [T-WIWI-102908]

Responsible: Prof. Dr. Petra Nieken

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101513 - Human Resources and Organizations
- M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2573001 | Personnel Policies and Labor Market Institutions | 2 SWS | Lecture / 📚 | Nieken |
| ST 2024 | 2573002 | Übungen zu Personalpolitik und Arbeitsmarktinstitutionen | 1 SWS | Practice / 📚 | Nieken, Mitarbeiter, Gorny |

Exams

| WT 23/24 | 7900202 | Personnel Policies and Labor Market Institutions | Nieken |
| ST 2024 | 7900133 | Personnel Policies and Labor Market Institutions | Nieken |

Legend: 🖥 Online, 🎭 Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled

Competence Certificate

The assessment of this course is a written examination of 1 hour. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites

None

Recommendation

Completion of module Business Administration is recommended. Basic knowledge of microeconomics, game theory, and statistics is recommended.

Below you will find excerpts from events related to this course:

Personnel Policies and Labor Market Institutions

2573001, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site
Content
The students acquire knowledge about the process and the strategic aspects of collective bargaining about wages. They analyze selected aspects of corporate governance and co-determination in Germany. The lecture also addresses questions of personnel politics and labor market discrimination. Microeconomic and behavioral approaches as well as empirical data is used and evaluated critically.

Aim
The student
- understands the process and role of agents in collective wage bargaining.
- analyzes strategic decisions in the context of corporate governance.
- understands the concept of co-determination in Germany.
- challenges statements that evaluate certain personnel politics.

Workload
The total workload for this course is approximately 135 hours.
Lecture 32 hours
Preparation of lecture 52 hours
Exam preparation 51 hours

Literature
8.178 Course: PH APL-ING-TL01 [T-WIWI-106291]

Organisation: University
Part of: M-WIWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
8.179 Course: PH APL-ING-TL02 [T-WIWI-106292]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-WIWI-101404 - Extracurricular Module in Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
8.180 Course: PH APL-ING-TL03 [T-WIWI-106293]

Organisation: University
Part of: M-WIWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Once</td>
<td>1</td>
</tr>
<tr>
<td>Organisation</td>
<td>University</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-101404 - Extracurricular Module in Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>0</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Once</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
8.182 Course: PH APL-ING-TL05 ub [T-WIWI-106295]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-WIWI-101404 - Extracurricular Module in Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>0</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Once</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
8.183 Course: PH APL-ING-TL06 ub [T-WIWI-106296]

Organisation: University

Part of: M-WIWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
8.184 Course: PH APL-ING-TL07 [T-WIWI-108384]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-WIWI-101404 - Extracurricular Module in Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
8.185 Course: Physical Basics of Laser Technology [T-MACH-102102]

Responsible: Dr.-Ing. Johannes Schneider
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2181612 | Physical basics of laser technology | 3 SWS | Lecture / Practice (/) Schneider |

Exams

| WT 23/24 | 76-T-MACH-102102 | Physical Basics of Laser Technology | Schneider |
| ST 2024 | 76-T-MACH-102102 | Physical Basics of Laser Technology | Schneider |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral examination (30 min)

no tools or reference materials

Prerequisites
It is not possible, to combine this brick with brick Laser Material Processing [T-MACH-112763], brick Laser Application in Automotive Engineering [T-MACH-105164] and brick Physical Basics of Laser Technology [T-MACH-109084]

Recommendation
Basic knowledge of physics, chemistry and material science

Below you will find excerpts from events related to this course:

Physical basics of laser technology
2181612, WS 23/24, 3 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ) On-Site
Content
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focuses on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
- safety aspects

The lecture is complemented by a tutorial.
The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- can describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- can illustrate the possible applications of laser sources in measurement and medicine technology
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Basic knowledge of physics, chemistry and material science is assumed.
regular attendance: 33.5 hours
self-study: 116.5 hours

The assessment consists of an oral exam (ca. 30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

It is allowed to select only one of the lectures "Laser in automotive engineering" (2182642) or "Physical basics of laser technology" (2181612) during the Bachelor and Master studies.

Organizational issues
Termine für die Übung werden in der Vorlesung bekannt gegeben!

Literature
T. Graf: Laser - Grundlagen der Laserstrahlerzeugung 2015, Springer Vieweg
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.186 Course: Physics for Engineers [T-MACH-100530]

Responsible: Prof. Dr. Martin Dienwiebel
Prof. Dr. Peter Gumbsch
apl. Prof. Dr. Alexander Nesterov-Müller
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Weygand, Dienwiebel, Nesterov-Müller, Gumbsch</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>Gumbsch, Dienwiebel, Nesterov-Müller, Weygand</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>Gumbsch, Weygand, Nesterov-Müller, Dienwiebel</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam 90 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Physics for Engineers
2142890, SS 2024, 4 SWS, Language: German, Open in study portal
Lecture / Practice (VÜ)
On-Site
Content
1) Foundations of solid state physics
 - Wave particle dualism
 - Tunnelling
 - Schrödinger equation
 - H-atom

2) Electrical conductivity of solids
 - solid state: periodic potentials
 - Pauli Principle
 - band structure
 - metals, semiconductors and isolators
 - p-n junction / diode

3) Optics
 - quantum mechanical principles of the laser
 - linear optics
 - non-linear optics

Exercises are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students and for testing progress in learning of the topics.

The student
 - has the basic understanding of the physical foundations to explain the relationship between the quantum mechanical principles and the optical as well as electrical properties of materials
 - can describe the fundamental experiments, which allow the illustration of these principles

regular attendance: 22.5 hours (lecture) and 22.5 hours (exercises)
self-study: 105 hours

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Organizational issues
Kontakt: daniel.weygand@kit.edu

Literature
- Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
- Harris, Moderne Physik, Pearson Verlag, 2013
8.187 Course: Platform Economy [T-WIWI-107506]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101421 - Supply Chain Management
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Credits</th>
<th>Time</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Platform Economy</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Weinhardt, Fegert</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Übung zu Platform Economy</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Pekkip, Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Platform Economy</td>
<td>2 SWS</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Platform Economy</td>
<td>7900266</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate
Alternative exam assessment. The assessment is carried out in the form of a one-hour written examination and by carrying out a case study. Details on the assessment will be announced during the lecture.

Prerequisites
see below

Recommendation
None

Below you will find excerpts from events related to this course:

Platform Economy

2540468, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) On-Site

Literature

8.188 Course: PLM-CAD Workshop [T-MACH-102153]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Event Description</th>
<th>Type</th>
<th>SWS</th>
<th>Grade</th>
<th>Grade to a third</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>4</td>
<td>SWS</td>
<td>Project (P / 🗣️)</td>
<td>Ovtcharova, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>4</td>
<td>SWS</td>
<td>Project (P / 🗣️)</td>
<td>Meyer, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Event Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102153</td>
<td>Project (PRO)</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (graded)

Prerequisites
None

Annotation
Number of participants is limited, compulsory attendance

Below you will find excerpts from events related to this course:

PLM-CAD Workshop
2121357, WS 23/24, 4 SWS, Language: German, [Open in study portal]

Content
The aim of the workshop is to demonstrate the benefits of collaborative product development using PLM methods and to emphasize their added value compared to classical CAD development. Students learn how to develop and produce a prototype with the help of modern PLM and CAx systems.

Literature
Workshop-Unterlagen / workshop materials

PLM-CAD Workshop
2121357, SS 2024, 4 SWS, Language: German, [Open in study portal]

Content
The aim of the workshop is to demonstrate the benefits of collaborative product development using PLM methods and to emphasize their added value compared to classical CAD development. Students learn how to develop and produce a prototype with the help of modern PLM and CAx systems.

Organizational issues
Siehe Homepage zur Lehrveranstaltung

Literature
Workshop-Unterlagen / workshop materials
8.189 Course: Polymer Engineering I [T-MACH-102137]

Responsible: Dr.-Ing. Wilfried Liebig
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, about 25 minutes

Prerequisites
none

Below you will find excerpts from events related to this course:

Polymer Engineering I
2173590, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

1. Economical aspects of polymers
2. Introduction of mechanical, chemical and electrical properties
3. Processing of polymers (introduction)
4. Material science of polymers
5. Synthesis

Learning objectives:

The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material "polymer" meeting its requirements in an economical and ecological way.

The students

- are able to describe and classify polymers based on the fundamental synthesis processing techniques
- can find practical applications for state-of-the-art polymers and manufacturing technologies
- are able to apply the processing techniques, the application of polymers and polymer composites regarding to the basic principles of material science
- can describe the special mechanical, chemical and electrical properties of polymers and correlate these properties to the chemical bindings.
- can define application areas and the limitation in the use of polymers

Requirements

none

Workload:

regular attendance: 21 hours
self-study: 99 hours
Literatur
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
8.190 Course: Polymer Engineering II [T-MACH-102138]

Responsible: Dr.-Ing. Wilfried Liebig

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2174596</td>
<td>Polymer Engineering II</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Liebig</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102138</td>
<td>Polymerengineering II</td>
<td>Liebig</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102138</td>
<td>Polymerengineering II</td>
<td>Liebig</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Oral exam, about 25 minutes

Prerequisites

none

Recommendation

Knowledge in Polymerengineering I

Below you will find excerpts from events related to this course:

Polymer Engineering II

2174596, SS 2024, 2 SWS, Language: German, [Open in study portal](#)
Content
1. Processing of polymers
2. Properties of polymer components
 Based on practical examples and components
 2.1 Selection of material
 2.2 Component design
 2.3 Tool engineering
 2.4 Production technology
 2.5 Surface engineering
 2.6 Sustainability, recycling

Learning objectives:
The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, that the students gather knowledge and technical skills to use the material "polymer" meeting its requirements in an economical and ecological way.

The students
- can describe and classify different processing techniques
- and can exemplify mould design principles based on technical parts.
- know about practical applications and processing of polymer parts
- are able to design polymer parts according to given restrictions
- can choose appropriate polymers based on the technical requirements
- can decide how to use polymers regarding the production, economical and ecological requirements

Requirements:
Polymerengineering I

Workload:
The workload for the lecture Polymerengineering II is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).

Literature
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
Recommended literature and selected official lecture notes are provided in the lecture.
8.191 Course: Power Network [T-ETIT-100830]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-102379 - Power Network

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type/Class</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2307371</td>
<td>Power Network</td>
<td>Lecture</td>
<td>Leibfried, Geis-Schroer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2307373</td>
<td>Tutorial for 2307371 Power Network</td>
<td>Practice</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type/Class</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7307371</td>
<td>Power Network</td>
<td>Lecture</td>
<td>Leibfried</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7307371</td>
<td>Power Network</td>
<td>Lecture</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- ☑️ Blended (On-Site/Online)
- 🗣 On-Site
- ❌ Cancelled
Course: Practical Seminar: Digital Services [T-WIWI-110888]

Responsible: Prof. Dr. Gerhard Satzger
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Practical Seminar: Digital Services (Ba)</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Practical Seminar: Digital Services</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion. In the seminar, a maximum score of 60 points can be achieved, consisting of:

- maximum 25 points for the documentation (written examination)
- maximum 25 points for the practical assessment
- maximum 10 points for the participation during the discussion sessions

The practical seminar is passed when at least a score of 30 points is achieved.

Prerequisites
None

Recommendation
None

Annotation
The current range of seminar topics is announced on the following Website:
www.dsi.iism.kit.edu

Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Practical Seminar: Digital Services (Ba)</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Practical Seminar: Digital Services</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion. In the seminar, a maximum score of 60 points can be achieved, consisting of:

- maximum 25 points for the documentation (written examination)
- maximum 25 points for the practical assessment
- maximum 10 points for the participation during the discussion sessions

The practical seminar is passed when at least a score of 30 points is achieved.

Prerequisites
None

Recommendation
None

Annotation
The current range of seminar topics is announced on the following Website:
www.dsi.iism.kit.edu
8.193 Course: Practical Seminar: Interactive Systems [T-WIWI-111914]

Responsible: Prof. Dr. Alexander Mädche
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105928 - HR Management & Digital Workplace
M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2540555 | Practical Seminar: Interactive Systems | 3 SWS | Lecture / 🧩 | Mädche |

Exams

| ST 2024 | 7900113 | Practical Seminar: Interactive Systems | Mädche |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔗 On-Site, X Cancelled

Competence Certificate

Alternative exam assessment.

The assessment of this course consists of the implementation of a practical component, the preparation of a written documentation, and active participation in the discussions.

A total of 60 points can be achieved, of which:

- maximum 25 points for the written documentation
- maximum 25 points for the practical component
- maximum 10 points for active participation in the discussions

A minimum of 30 points must be achieved to pass this course.

Please note that a practical component, such as conducting a survey or implementing an application, is also part of the course. Please refer to the institute website issd.iism.kit.edu for the current offer of practical seminar theses.

Below you will find excerpts from events related to this course:

Practical Seminar: Interactive Systems
2540555, SS 2024, 3 SWS, Language: English, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

In this practical seminar, students get an individual assignment and develop a running software prototype. Beside the software prototype, the students also deliver a written documentation.

Please find the current open offerings on our website: https://h-lab.iism.kit.edu/thesis.php
8.194 Course: Practical Seminar: Platform Economy [T-WIWI-112154]

Competence Certificate

The assessment of this course is in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites

None.
8.195 Course: Practical Training in Basics of Microsystem Technology [T-MACH-102164]

Responsible: Dr. Arndt Last
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101287 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>2 SWS</td>
<td>Practical course / 🗣️</td>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>2 SWS</td>
<td>Practical course / 🗣️</td>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>2 SWS</td>
<td>Practical course / 🗣️</td>
<td>Last</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Practical Training in Basics of Microsystem Technology</td>
<td>2 SWS</td>
<td>Practical course</td>
<td>Last</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology - Practical Course
2143875, WS 23/24, 2 SWS, Language: German, Open in study portal

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

Introduction to Microsystem Technology - Practical Course
2143877, WS 23/24, 2 SWS, Language: German, Open in study portal

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

Introduction to Microsystem Technology - Practical Course
2143875, SS 2024, 2 SWS, Language: German, Open in study portal
Content
In the practical training includes ten experiments:
1. Röntgenoptik
2. UVL + REM
3. Mischerbauteil
4. Rasterkraftmikroskopie
5. 3D-Printing
6. Lichtstreuung an Chrommasken
7. Abformung
8. SAW-Biosensorik
9. Nano3D-Drucker - Materialtransfer dünnster Schichten
10. Elektrospinning

Each student takes part in only four experiments.
The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Organizational issues
Das Praktikum findet in den Laboren des IMT am CN statt. Treffpunkt: Bau 301, vor dem Eingang.
Teilnahmeanfragen an arndt.last@kit.edu

Literature
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'
8.196 Course: Problem Solving, Communication and Leadership [T-WIWI-102871]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Hagen Lindstädt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Economics and Management</td>
</tr>
</tbody>
</table>
| Part of: | M-WIWI-101425 - Strategy and Organization
 | M-WIWI-101513 - Human Resources and Organizations |

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam Code</th>
<th>Course Name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900070</td>
<td>Problem Solving, Communication and Leadership</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900068</td>
<td>Problem Solving, Communication and Leadership</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (30 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None
8.197 Course: Procedures of Remote Sensing [T-BGU-103542]

 Responsible: Dr.-Ing. Uwe Weidner
 Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
 Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>2</td>
</tr>
</tbody>
</table>
Course: Procedures of Remote Sensing, Prerequisite [T-BGU-101638]

Responsible: Dr.-Ing. Uwe Weidner
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Procedure of Remote Sensing, Excercise</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Weidner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Procedure of Remote Sensing, Prerequisite</td>
<td>Weidner</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
None

Recommendation
None

Annotation
None
8.199 Course: Process Fundamentals by the Example of Food Production [T-CIWVT-106058]

- **Responsible:** PD Dr. Volker Gaukel
- **Organisation:** KIT Department of Chemical and Process Engineering
- **Part of:** M-WIWI-101839 - Additional Fundamentals of Engineering

Type
- Written examination

Credits
- 3

Grading scale
- Grade to a third

Version
- 1

Events

| WT 23/24 | 2211110 | Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung (für LmCh, WIWI) | 2 SWS | Lecture / 🗣 | Gaukel |

Exams

| WT 23/24 | 7220007 | Process fundamentals by the example of food production | Gaukel |

Legend: 🕹️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
8 COURSES
Course: Product- and Production-Concepts for Modern Automobiles [T-MACH-110318]

Responsible: Dr. Stefan Kienzle
Dr. Dieter Steegmüller
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture / 📔</td>
<td>Steegmüller, Kienzle</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture / 📔</td>
<td>Steegmüller, Kienzle</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (20 min)

Prerequisites

T-MACH-105166 - Materials and Processes for Body Lightweight Construction in the Automotive Industry must not have been started.

Below you will find excerpts from events related to this course:

Product- and Production-Concepts for modern Automobiles

2149670, WS 23/24, 2 SWS, Language: German, Open in study portal
Lecture (V) Blended (On-Site/Online)
Content
The lecture illuminates the practical challenges of modern automotive engineering. As former leaders of the automotive industry, the lecturers refer to current aspects of automotive product development and production. The aim is to provide students with an overview of technological trends in the automotive industry. In this context, the course also focuses on changes in requirements due to new vehicle concepts, which may be caused by increased demands for individualisation, digitisation and sustainability. The challenges that arise in this context will be examined from both a production technology and product development perspective and will be illustrated with practical examples thanks to the many years of industrial experience of both lecturers.

The topics covered are:

- General conditions for vehicle and body development
- Integration of new drive technologies
- Functional requirements (crash safety etc.), also for electric vehicles
- Development Process at the Interface Product & Production, CAE/Simulation
- Energy storage and supply infrastructure
- Aluminium and lightweight steel construction
- FRP and hybrid parts
- Battery, fuel cell and electric motor production
- Joining technology in modern car bodies
- Modern factories and production processes, Industry 4.0.

Learning Outcomes:
The students...

- are able to name the presented general conditions of vehicle development and are able to discuss their influences on the final product using practical examples.
- are able to name the various lightweight approaches and identify possible areas of application.
- are able to identify the different production processes for manufacturing lightweight structures and explain their functions.
- are able to perform a process selection based on the methods and their characteristics.

Workload:
regular attendance: 25 hours
self-study: 95 hours

Organizational issues
Termine werden über Ilias bekannt gegeben.
Bei der Vorlesung handelt es sich um eine Blockveranstaltung. Eine Anmeldung über Ilias ist erforderlich.
Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.
The lecture is a block course. An application in Ilias is mandatory.
Theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.201 Course: Product Lifecycle Management [T-MACH-105147]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content

The course includes:

- Basics for product data management and data exchange
- IT system solutions for Product Lifecycle Management (PLM)
- Economic viability analysis and implementation problems
- Illustrative scenario for PLM using the example of the institute's own I4.0Lab

After successful attendance of the course, students can:

- identify the challenges of data management and exchange and describe solution concepts for these challenges.
- clarify the management concept PLM and its goals and highlight the economic benefits.
- explain the processes required to support the product life cycle and describe the most important business software systems (PDM, ERP, ...) and their functions.
Literature

Responsible: Prof. Dr.-Ing. Sama Mbang

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2123364 | Product, Process and Resource Integration in the Automotive Industry | 2 SWS | Lecture / Practice (/ Mbang |

Exams

| WT 23/24 | 76-T-MACH-102155 | Product, Process and Resource Integration in the Automotive Industry | Mbang |

Competence Certificate

Oral examination 20 min.

Prerequisites

None

Annotation

Limited number of participants.

Below you will find excerpts from events related to this course:

Product, Process and Resource Integration in the Automotive Industry

2123364, SS 2024, 2 SWS, Language: German, Open in study portal

Content

- Overview of product development in the automotive sector (process- and work cycle, IT-Systems)
- Integrated product models in the automotive industry (product, process and resource)
- New CAx modeling methods (intelligent feature technology, templates & functional modeling)
- Automation and knowledge-based mechanism for product design and production planning
- Product development in accordance with defined process and requirement (3D-master principle, tolerance models)
- Concurrent Engineering, shared working
- Enhanced concepts: the digital and virtual factory (application of virtual technologies and methods in the product development)

Organizational issues

Blockveranstaltung

Literature

Vorlesungsfolien
8.203 Course: Production Economics and Sustainability [T-WIWI-102820]

Responsible: Prof. Dr. Frank Schultmann
Dr.-Ing. Rebekka Volk

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101437 - Industrial Production I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2581960</td>
<td>Production Economics and Sustainability</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Volk</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Course</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7981960</td>
<td>Production Economics and Sustainability</td>
<td>Schultmann</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7981960</td>
<td>Production Economics and Sustainability</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Below you will find excerpts from events related to this course:

Production Economics and Sustainability

2581960, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

The analysis and management of material flows on the company level and above will be the focus of this lecture. Herein, the discussion will be about cost-effective and environmentally acceptable steps to avoid, abate and recycle emissions and waste as well as ways of efficient resources handling. As methods material flow analysis (MFA), life cycle assessment (LCA) and OR methods, e.g. for decision support, are introduced.

Topics:
- regulations related to materials and substances
- raw materials, reserves and their availabilities/lifetimes
- material and substance flow analysis (MFA/SFA)
- material related ecoprofiles, e.g. Carbon Footprint
- LCA
- resource efficiency
- emission abatement
- waste management and closed-loop recycling
- raw material oriented production systems
- environmental management (EMAS, ISO 14001, Ecoproof), eco-controlling

Organizational issues

Seminarraum Uni-West, Geb. 06.33

Literature

wird in der Veranstaltung bekannt gegeben
8.204 Course: Production Technology for E-Mobility [T-MACH-110984]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>WS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2150605</td>
<td>Production Technology for E-Mobility</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>WS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-110984</td>
<td>Production Technology for E-Mobility</td>
<td></td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td>Fleischer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-110984</td>
<td>Production Technology for E-Mobility</td>
<td></td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written Exam (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Production Technology for E-Mobility

2150605, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

In the lecture Production Engineering for Electromobility the students should be enabled to design, select and develop production processes for the production of the components of an electric drive train (electric motor, battery cells, fuel cells) by using research-oriented teaching.

Learning Outcomes:

The students are able to:

- describe the structure and function of a fuel cell, an electric traction drive and a batteriesystem.
- reproduce the process chains for the production of the components fuel cell, battery and electric traction drive.
- apply methodical tools to solve problems along the process chain.
- derive the challenges in the production of electric drives for electric mobility.
- describe the factors influencing the individual process steps on each other using the process chain of Li-ion battery cells.
- enumerate or describe the necessary process parameters to counteract the influencing factors of the process steps in Li-ion battery cell production.
- apply methodical tools to solve problems along the process chain for the production of Li-ion battery cells.
- derive the challenge of mounting and dismounting battery modules.
- derive the challenges in the production of fuel cells for use in mobility.

Workload:

regular attendance: 42 hours
self-study: 78 hours

Organizational issues

Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.
Literature
Skrift zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
8.205 Course: Production, Logistics and Information Systems [T-WIWI-111602]

Responsible:
- Prof. Dr. Wolf Fichtner
- Prof. Dr. Andreas Geyer-Schulz
- Prof. Dr. Alexander Mädche
- Prof. Dr. Stefan Nickel
- Prof. Dr. Frank Schultmann
- Prof. Dr. Christof Weinhardt

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-105770 - Production, Logistics and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2600004</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2600005</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Fichtner, Nickel, Schultmann</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2610029</td>
<td>Tutorial</td>
<td>2 SWS</td>
<td>Tutorial</td>
<td>Nickel</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900154</td>
<td>Production, Logistics and Information Systems</td>
<td>Schultmann, Nickel, Weinhardt, Mädche, Geyer-Schulz, Fichtner</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900077</td>
<td>Production, Logistics and Information Systems</td>
<td>Schultmann, Nickel, Fichtner, Weinhardt, Mädche, Geyer-Schulz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧳 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
Written Exam. The examination is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2600004</td>
<td>Lecture (V)</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024

Responsible: Prof. Dr.-Ing. Stefan Hinz
Dr.-Ing. Uwe Weidner

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6020245</td>
<td>Projektübung angewandte Fernerkundung</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Hinz, Weidner, Wursthorn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8 COURSES

Course: Project Internship Additive Manufacturing: Development and Production of an Additive Component [T-MACH-110960]

8.207 Course: Project Internship Additive Manufacturing: Development and Production of an Additive Component [T-MACH-110960]

Responsible: Prof. Dr.-Ing. Frederik Zanger
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Title</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Project Internship Aditive Manufacturing: Development and Production of an Additive Component</td>
<td>Zanger, Frey</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Title</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td></td>
<td>Project Internship Aditive Manufacturing: Development and Production of an Additive Component</td>
<td>Zanger</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative test achievement (graded)

The competence certificate is a project work; alternative test achievement according to § 4 Abs. 2 No. 3 of the SPO. Here, the project work, the milestone-based presentation of the results in presentation form (10 min each) and a final oral examination (15 min) are included in the assessment.

Prerequisites

none

Below you will find excerpts from events related to this course:

Project Internship Additive Manufacturing: Development and Production of an Additive Component
2149700, WS 23/24, 2 SWS, Language: German, Open in study portal

Practical course (P) On-Site
Content
The lecture “Project Internship Additive Manufacturing: Development and Production of an Additive Component” combines the basics of metallic laser powder bed fusion (LPBF) with a development project in cooperation with an industrial company. The students learn the basics of the following topics in the project-related lecture:

- Influence of different process variables on the component quality of parts produced in the LPBF process
- Preparation and simulation of the LPBF process
- Production of additive metallic components
- Process monitoring and quality assurance in additive manufacturing
- Topology optimization
- CAM for subtractive rework

The topics addressed in the course will be applied practically in various workshops on the individual topics and transferred to the developmental task in self-study. Finally, the results of the elaborations are produced additively and post-processed subtractively.

Learning Outcomes:
The students ...

- are able to describe the properties and applications of the additive manufacturing processes laser powder bed fusion (LPBF).
- are able to select the appropriate manufacturing process for a technical application.
- are able to describe and implement the creation of a product along the entire additive process chain (CAD, simulation, work preparation, CAM) from the idea to the production.
- are able to discuss the development process for components that are optimized for additive manufacturing.
- are able to perform topology optimization.
- are able to simulate the additive process, compensate for process-related distortions and determine the ideal alignment on the building platform.
- are able to create necessary support structures for the additive process and to derive a building order file.
- are able to create a CAM model for the subtractive rework process of additive parts.

Workload:
regular attendance: 12 hours
self-study: 108 hours

Organizational issues

Aus organisatorischen Gründen ist die Teilnehmerzahl für die Lehrveranstaltung begrenzt. Infolgedessen wird ein Auswahlprozess stattfinden. Der Link zur Bewerbung wird in der Vorlesungsankündigung über die Homepage des wbk (http://www.wbk.kit.edu/studium-und-lehre.php) zur Verfügung gestellt.

Literature
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.
8.208 Course: Project Management [T-BGU-101675]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-101004 - Fundamentals of Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>6200106</td>
<td>Project Management</td>
<td>2 SWS</td>
<td>Lecture / Practice</td>
<td>Haghsheno, John, Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>8230101675</td>
<td>Project Management (graded)</td>
<td></td>
<td></td>
<td>Haghsheno, Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
written exam with 60 minutes

Prerequisites
None

Recommendation
None

Annotation
None

Below you will find excerpts from events related to this course:

Project Management
6200106, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
The module provides an introduction to construction project management. Here, the organization and delivery of a construction project from the owner’s perspective is dealt with in more detail. In this context, various competencies are presented that should be available for the implementation of successful project management. In addition, selected project management methods for individual competencies are presented and applied in the context of case studies.

Organizational issues
Vorlesungen: Mittwochs (25.10.2023 bis 14.02.2024), jeweils 09:45 – 11:15 Uhr (hybrid - Raum: siehe ILIAS-Kurs)

Literature
- GPM Deutsche Gesellschaft für Projektmanagement e. V. (Hrsg.) (2017) Individual Competence Baseline für Projektmanagement (Version 4.0), 1. Auflage, GPM Deutsche Gesellschaft für Projektmanagement e. V., Nürnberg
- Haghsheno, Shervin; John, Paul Christian (2022) Bau-Projektmanagement in Deutschland (Skriptum)
Course: Project Workshop: Automotive Engineering [T-MACH-102156]

Responsible:
- Dr.-Ing. Michael Frey
- Prof. Dr. Frank Gauterin
- Dr.-Ing. Martin Gießler

Organisation:
KIT Department of Mechanical Engineering

Part of:
- M-MACH-101264 - Handling Characteristics of Motor Vehicles
- M-MACH-101265 - Vehicle Development
- M-MACH-101266 - Automotive Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>3</td>
<td>Lecture</td>
<td>Gauterin, Gießler, Frey</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>3</td>
<td>Lecture</td>
<td>Gauterin, Gießler, Frey</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>3</td>
<td>Lecture</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Competence Certificate

- **Oral examination**
- **Duration:** 30 up to 40 minutes
- **Auxiliary means:** none

Prerequisites

- none

Below you will find excerpts from events related to this course:

Project Workshop: Automotive Engineering

- Event ID: 2115817, WS 23/24, 3 SWS, Language: German, [Open in study portal](#)
Content
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Learning Objectives:
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Organizational issues
Begrenzte Teilnehmerzahl mit Auswahlverfahren. Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Termin und Raum: siehe Institutshomepage.

Limited number of participants with selection procedure. Please send the application at the end of the previous semester

Date and room: see homepage of institute.

Literature

Skriften werden beim Start-up Meeting ausgegeben.
The scripts will be supplied in the start-up meeting.

Project Workshop: Automotive Engineering
2115817, SS 2024, 3 SWS, Language: German, Open in study portal

Content
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Learning Objectives:
The students are familiar with typical industrial development processes and working style. They are able to apply knowledge gained at the university to a practical task. They are able to analyze and to justify complex relations. They are ready to work self-dependently, to apply different development methods and to work on approaches to solve a problem, to develop practice-oriented products or processes.

Organizational issues
Begrenzte Teilnehmerzahl mit Auswahlverfahren, die Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Raum und Termine: s. Aushang bzw. Homepage
Literature

Scripthe werden beim Start-up Meeting ausgegeben.
8.210 Course: Public Economics [T-WIWI-112721]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101403 - Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Depending on the further pandemic development the assessment will consist either of an open book exam, or of an 1h written exam.

Prerequisites
None

Annotation
The lecture will be held in English in the summer semester 2023.
8.211 Course: Public Law I & II [T-INFO-110300]

Responsible: N.N.
Organisation: KIT Department of Informatics
Part of: M-INFO-105084 - Public and Civil Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24016</td>
<td>Öffentliches Recht I - Grundlagen</td>
<td>2 SWS</td>
<td>Lecture / Zufall</td>
</tr>
<tr>
<td>ST 2024</td>
<td>24520</td>
<td>Öffentliches Recht II - Öffentliches Wirtschaftsrecht</td>
<td>2 SWS</td>
<td>Lecture / Zufall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500138</td>
<td>Public Law I & II</td>
<td></td>
<td>Zufall</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7500298</td>
<td>Public Law I & II</td>
<td></td>
<td>Zufall</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
8.212 Course: Public Revenues [T-WIWI-102739]

Responsible: Prof. Dr. Berthold Wigger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101403 - Public Finance
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2560120</td>
<td>Public Revenues</td>
<td>2 SWS</td>
<td>Lecture / Wigger</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2560121</td>
<td>Übung zu Öffentliche Einnahmen</td>
<td>1 SWS</td>
<td>Practice / Wigger, Schmelzer</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>790oef</td>
<td>Public Revenues</td>
<td></td>
<td>Wigger</td>
</tr>
<tr>
<td>ST 2024</td>
<td>790oef</td>
<td>Public Revenues</td>
<td></td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Recommendation

Basic knowledge of Public Finance is required.

Below you will find excerpts from events related to this course:

Public Revenues

2560120, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site

Content

The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Learning goals:

See German version.

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
Course: Python Algorithm for Vehicle Technology [T-MACH-110796]

Responsible: Stephan Rhode
Organisation: M-MACH-101265 - Vehicle Development
M-MACH-101266 - Automotive Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2114862</td>
<td>Python Algorithms for Automotive Engineering</td>
<td>2 SWS</td>
<td>Lecture / X</td>
<td>Rhode</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-Mach-110796</td>
<td>Python Algorithm for Vehicle Technology</td>
<td></td>
<td></td>
<td>Rhode</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate

Written Examination
Duration: 90 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Python Algorithms for Automotive Engineering

2114862, SS 2024, 2 SWS, Language: German, Open in study portal
Lecture (V)
Cancelled

Content

Teaching content:

- Introduction to Python and useful tools and libraries for creating algorithms, graphical representation, optimization, symbolic arithmetic and machine learning
 - Anaconda, Pycharm, Jupyter
 - NumPy, Matplotlib, SymPy, Scikit-Learn
- Methods and tools for creating software
 - Version management GitHub, git
 - Testing software pytest, Pylint
 - Documentation Sphinx
 - Continuous Integration (CI) Travis CI
 - Workflows in Open Source and Inner Source, Kanban, Scrum
- Practical programming projects to:
 - Road sign recognition
 - Vehicle state estimation
 - Calibration of vehicle models by mathematical optimization
 - Data-based modelling of the powertrain of an electric vehicle

Objectives:

The students have an overview of the programming language Python and important Python libraries to solve automotive engineering problems with computer programs. The students know current tools around Python to create algorithms, to apply them and to interpret and visualize their results. Furthermore, the students know basics in the creation of software to be used in later programming projects in order to develop high-quality software solutions in teamwork. Through practical programming projects (road sign recognition, vehicle state estimation, calibration, data-based modelling), the students can perform future complex tasks from the area of driver assistance systems.

Organizational issues

Die Vorlesung wird im erst wieder im Sommersemester 2025 stattfinden.
Literature

- **A Whirlwind Tour of Python**, Jake VanderPlas, Publisher: O'Reilly Media, Inc. Release Date: August 2016, ISBN: 9781492037859 [link](#)
8.214 Course: Quality Management [T-MACH-102107]

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Competence Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Exam (60 min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is not possible to combine this brick with brick Quality Management [T-MACH-112586].</td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Quality Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149667, WS 23/24, 2 SWS, Language: German, Open in study portal</td>
</tr>
<tr>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>
Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

- The term “Quality”
- Total Quality Management (TQM) and Six Sigma
- Universal methods and tools
- QM during early product stages – product denition
- QM during product development and in procurement
- QM in production – manufacturing metrology
- QM in production – statistical methods
- QM in service
- Quality management systems
- Legal aspects of QM

Learning Outcomes:
The students ...

- are capable to comment on the content covered by the lecture.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Vorlesungstermine montags 09:45 Uhr
Übung erfolgt während der Vorlesung

Literature
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt:

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.215 Course: Rail System Technology [T-MACH-102143]

Responsible: Prof. Dr.-Ing. Martin Cichon

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101274 - Rail System Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>On-Site</td>
<td>Cichon, Heckele</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>On-Site</td>
<td>Cichon, Reimann</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>On-Site</td>
<td>Cichon</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>On-Site</td>
<td>Cichon</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102143</td>
<td>Rail System Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>On-Site</td>
<td>Cichon, Heckele, Reimann</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102143</td>
<td>Rail System Technology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>On-Site</td>
<td>Cichon, Berthold</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ☑️ Cancelled

Competence Certificate
written examination in German language
Duration: 120 minutes
No tools or reference materials may be used during the exam except calculator and dictionary

Prerequisites
one

Below you will find excerpts from events related to this course:

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Literature
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
A bibliography is available for download (Ilias-platform).
Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, comparison electric traction and diesel traction, dc and ac networks, system pantograph and contact wire, filling stations

Organizational issues

ab SS 2024 schriftliche Prüfung

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).

Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, coupling, doors and windows
3. Bogies: forces, running gears, bogies, Jakobs-bogies, active components, connection to car body, wheel arrangement
4. Drives: principles, electric drives (main components, asynchronous traction motor, inverter, with DC supply, with AC supply, without line supply, multisystem vehicles, dual mode vehicles, hybrid vehicles), non-electric drives
5. Brakes: basics, principles (wheel brakes, rail brakes, blending), brake control (requirements and operation modes, pneumatic brake, electropneumatic brake, emergency brake, parking brake)
6. Train control management system: definition of TCMS, bus systems, components, network architectures, examples, future trends

Organizational issues

ab SS 2024 schriftliche Prüfung

Literature

Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

A bibliography is available for download (Ilias-platform).
8.216 Course: Remote Sensing, Exam [T-BGU-101636]

Responsible: Prof. Dr. Jan Cermak
Prof. Dr.-Ing. Stefan Hinz
Dr.-Ing. Uwe Weidner

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>6020241</th>
<th>Remote Sensing Systems</th>
<th>1 SWS</th>
<th>Lecture / 🗣</th>
<th>Hinz, Cermak</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>6020242</td>
<td>Systems of Remote Sensing, Exercise</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Bork-Unkelbach</td>
</tr>
<tr>
<td>ST 2024</td>
<td>6020243</td>
<td>Procedures of Remote Sensing</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Weidner</td>
</tr>
<tr>
<td>ST 2024</td>
<td>6020244</td>
<td>Procedures of Remote Sensing, Exercise</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Weidner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>8284101636</th>
<th>Remote Sensing, Exam</th>
<th>Hinz, Weidner</th>
</tr>
</thead>
</table>

Recommendation

None

** Responsible:** Prof. Dr. Patrick Jochem
** Organisation:** KIT Department of Economics and Management
** Part of:** M-WIWI-101464 - Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>7</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2581012</td>
<td>Renewable Energy - Resources, Technologies</td>
<td>Lecture/✍️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Jochem</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7981012</td>
<td>Renewable Energy-Resources, Technologies</td>
<td>Fichtner</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7981012</td>
<td>Renewable Energy-Resources, Technologies</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes, in English, answers are possible in German or English) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

Below you will find excerpts from events related to this course:

Renewable Energy – Resources, Technologies and Economics
2581012, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V) On-Site

Content

1. General introduction: Motivation, Global situation
2. Basics of renewable energies: Energy balance of the earth, potential definition
3. Hydro
4. Wind
5. Solar
6. Biomass
7. Geothermal
8. Other renewable energies
9. Promotion of renewable energies
10. Interactions in systemic context
11. Excursion to the "Energieberg" in Mühlburg

Learning Goals:

The student

- understands the motivation and the global context of renewable energy resources.
- gains detailed knowledge about the different renewable resources and technologies as well as their potentials.
- understands the systemic context and interactions resulting from the increased share of renewable power generation.
- understands the important economic aspects of renewable energies, including electricity generation costs, political promotion and marketing of renewable electricity.
- is able to characterize and where required calculate these technologies.

Organizational issues

Blockveranstaltung, freitags 14:00-17:00 Uhr, 27.10., 10.11., 24.11., 08.12., 19.01., 26.01.09.02.
Literature
Weiterführende Literatur:

8.218 Course: Seminar Application of Artificial Intelligence in Production [T-MACH-112121]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-106590 - Production Engineering

Events

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>2150910</th>
<th>Seminar Application of Artificial Intelligence in Production</th>
<th>2 SWS</th>
<th>Seminar / 📚</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2024</th>
<th>76-T-MACH-112121</th>
<th>Seminar Application of Artificial Intelligence in Production</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate

Alternative test achievement (graded):

- Presentation of the results (approx. 20 min) followed by a colloquium (approx. 15 min) with weighting 25%
- Written processing of the results with weighting 75%

Prerequisites

none

Recommendation

Previous participation in the lecture 2149921 “Artificial Intelligence in Production” or advanced knowledge of Python.

Below you will find excerpts from events related to this course:

Seminar Application of Artificial Intelligence in Production

2150910, SS 2024, 2 SWS, Language: German, [Open in study portal](#)
Content
The module AI in Production is designed to teach students the practical, holistic integration of machine learning methods and the application of artificial intelligence in production. The course is oriented towards the phases of the CRISP-DM process with the aim of developing a deep understanding of the necessary steps and content-related aspects (methods) within the individual phases. In addition to teaching the practical aspects of integrating the most important machine learning methods, the focus here is primarily on the necessary steps for data generation and data preparation as well as the implementation and validation of the methods in an industrial environment.

The lecture "Seminar Application of Artificial Intelligence in Production" aims at the practical integration of current machine learning methods based on realistic industrial use cases. The content framework of the lecture results from the holistic, practical implementation of an AI project in production. First, the necessary Deep Learning programming basics are taught using the Keras software package. Subsequently, practice-relevant use cases are defined, which are to be implemented practically with the methods of machine learning and especially deep learning.

Learning Outcomes:
The Students

- are able to independently analyze a practical problem in production with regard to the application of machine learning methods.
- will be able to independently apply common deep learning algorithms to practical data sets, validate them, and analyze the results.
- understand the challenges of using deep learning methods in production.
- will know the main action areas and open research questions for the successful implementation of AI in production and for the implementation of autonomous machines.
- are able to evaluate the results of current deep learning methods and, based on these, to develop and practically apply proposed solutions (from the field of machine learning).

Workload:
regular attendance: 21 hours
self-study: 99 hours

Organizational issues
Zur Vertiefung des im Rahmen der Lehrveranstaltung erworbenen Wissens werden die theoretischen Vorlesungseinheiten durch Praxiseinheiten im Umfeld der Karlsruher Forschungsfabrik (https://www.karlsruher-forschungsfabrik.de) unterstützt.

The theoretical lectures are complemented by practical lectures in the Karlsruhe Research Factory (https://www.karlsruher-forschungsfabrik.de/en.html) to deepen the acquired knowledge.

Literature
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
8.219 Course: Seminar Data-Mining in Production [T-MACH-108737]

Responsibility: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering
Part of: M-WIWI-101816 - Seminar Module

Type
<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2151643</td>
<td>Seminar Data Mining in Production</td>
<td>2 SWS</td>
<td>Seminar / 🗣️</td>
<td>Lanza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2151643</td>
<td>Seminar Data Mining in Production</td>
<td>2 SWS</td>
<td>Seminar / 🗣️</td>
<td>Lanza</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-108737</td>
<td>Seminar Data-Mining in Production</td>
<td>Lanza</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-108737</td>
<td>Seminar Data-Mining in Production</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
alternative test achievement (graded):
- written elaboration (workload of at least 80 h)
- oral presentation (approx. 30 min)

Prerequisites
none

Annotation
The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Below you will find excerpts from events related to this course:

Seminar Data Mining in Production
2151643, WS 23/24, 2 SWS, Language: German, Open in study portal
Seminar (S)
On-Site
Content
In the age of Industry 4.0, large amounts of production data are generated by the global production networks and value chains. Their analysis enables valuable conclusions about production and lead to an increasing process efficiency. The aim of the seminar is to get to know production data analysis as an important component of future industrial projects. The students get to know the data mining tool KNIME and use it for analyses. A specific industrial use case with real production data enables practical work and offers direct references to industrial applications. The participants learn selected methods of data mining and apply them to the production data. The work within the seminar takes place in small groups on the computer. Subsequently, presentations on specific data mining methods have to be prepared.

Learning Outcomes:
The students ...

- can name, describe and distinguish between different methods, procedures and techniques of production data analysis.
- can perform basic data analyses with the data mining tool KNIME.
- can analyze and evaluate the results of data analyses in the production environment.
- are able to derive suitable recommendations for action.
- are able to explain and apply the CRISP-DM model.

Workload:
regular attendance: 10 hours
self-study: 80 hours

Organizational issues

The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Literature
Medien:
KNIME Analytics Platform

Media:
KNIME Analytics Platform

V Seminar Data Mining in Production
2151643, SS 2024, 2 SWS, Language: German, [Open in study portal]

On-Site

Content
In the age of Industry 4.0, large amounts of production data are generated by the global production networks and value chains. Their analysis enables valuable conclusions about production and lead to an increasing process efficiency. The aim of the seminar is to get to know production data analysis as an important component of future industrial projects. The students get to know the data mining tool KNIME and use it for analyses. A specific industrial use case with real production data enables practical work and offers direct references to industrial applications. The participants learn selected methods of data mining and apply them to the production data. The work within the seminar takes place in small groups on the computer. Subsequently, presentations on specific data mining methods have to be prepared.

Learning Outcomes:
The students ...

- can name, describe and distinguish between different methods, procedures and techniques of production data analysis.
- can perform basic data analyses with the data mining tool KNIME.
- can analyze and evaluate the results of data analyses in the production environment.
- are able to derive suitable recommendations for action.
- are able to explain and apply the CRISP-DM model.

Workload:
regular attendance: 10 hours
self-study: 80 hours
Organizational issues

The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Literature
Medien:
KNIME Analytics Platform

Media:
KNIME Analytics Platform
8.220 Course: Seminar in Business Administration (Bachelor) [T-WIWI-103486]

<table>
<thead>
<tr>
<th>Course: Seminar in Business Administration (Bachelor) [T-WIWI-103486]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible:</td>
</tr>
<tr>
<td>Organisation:</td>
</tr>
<tr>
<td>Part of:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.220 WT 23/24 2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Mädeche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2500215</td>
<td>Entrepreneurship Seasonal School</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Weimar, Terzidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2530586</td>
<td></td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Uhrig-Homburg, Eska, Molnar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2530610</td>
<td>Seminar in Financial Economics (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Thimme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2540473</td>
<td>Business Data Analytics</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Badewitz, Grote, Schulz, Motz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2540475</td>
<td>Positive Information Systems</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Knierim, del Puppo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2540478</td>
<td>Smart Grids and Energy Markets</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Weinhardt, Semmelmann, Miskiw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2540524</td>
<td>Bachelor Seminar in Data Science and Machine Learning</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Geyer-Schulz, Nazemi, Schweizer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2540557</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Mädeche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2545010</td>
<td>Entrepreneurship Basics (Track 1)</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Hirte, Terzidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2545011</td>
<td>Entrepreneurship Basics (Track 2)</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Terzidis, Wohlfell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2571180</td>
<td>Seminar in Marketing and Sales (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Klarmann, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2573010</td>
<td>Seminar: Human Resources and Organizations (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2573011</td>
<td>Seminar: Human Resource Management (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2579911</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Wouters, Dickemann, Letmathe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2579919</td>
<td>Seminar Management Accounting - Sustainability Topics</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Wouters, Dickemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2581030</td>
<td>Seminar in Energy Economics</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Fichtner, Sloot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2581976</td>
<td>Seminar in Production and Operations Management I</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Schultmann, Rudi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2581977</td>
<td>Seminar in Production and Operations Management II</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Volk, Schultmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2581978</td>
<td>Seminar Produktionswirtschaft und Logistik III</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Schultmann, Kaiser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2581979</td>
<td>Seminar in Energy Economics</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Fichtner, Kleinebrahm, Finck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.220 WT 23/24 2581981</td>
<td>Seminar in Energy Economics</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Ardone, Fichtner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2500020</td>
<td>Digital Democracy - Challenges and opportunities of the digital society</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Fegert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2500024</td>
<td>Biosignals in Information Systems & Marketing</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Knierim, del Puppo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2500027</td>
<td>Design Seminar: Digital Citizen Science</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Berens, Volkamer, Mädche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2500125</td>
<td>Human-Centered Systems Seminar: Engineering</td>
<td>3 SWS</td>
<td>Seminar / 🧩</td>
<td>Mädche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2530293</td>
<td>Seminar in Finance (Bachelor, Prof. Buckes)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Buckes, Lueddecke, Hoang, Benz, Wiegratz, Silbereis, Kohl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2530610</td>
<td>Seminar Financial Economics</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Thimme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2540473</td>
<td>Business Data Analytics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Hariharian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2540475</td>
<td>Platforms & Digital Experiences</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Knierim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2540478</td>
<td>Smart Grid Economics & Energy Markets</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2540524</td>
<td>Bachelor Seminar in Data Science and Machine Learning</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Geyer-Schulz, Schweizer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2540553</td>
<td>User-Adaptive Systems Seminar</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Mädche, Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2540557</td>
<td>Human-Centered Systems Seminar: Research</td>
<td>3 SWS</td>
<td>Seminar / 🧩</td>
<td>Mädche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2545010</td>
<td>Entrepreneurship Basics (Track 1)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Hirte, Terzidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2545011</td>
<td>Entrepreneurship Basics (Track 2)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Wohlfeil, Terzidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2571187</td>
<td>Seminar Digital Marketing (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Kupfer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2579909</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Wouters, Jaedeke, Kepl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2579919</td>
<td>Seminar Management Accounting - Sustainability Topics</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Letmathe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2581977</td>
<td>Seminar Produktionswirtschaft und Logistik II</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Volk, Schultmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2581980</td>
<td>Seminar Energiewirtschaft II</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Fichtner, Finck</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

WT 23/24	00072	Seminar Positive Information Systems			Weinhardt
WT 23/24	00074	Seminar Business Data Analytics			Weinhardt
WT 23/24	7900017	Seminar Smart Grid and Energy Markets			Weinhardt
WT 23/24	7900069	Engineering Seminar: Human-Centered Systems			Mädche
WT 23/24	7900085	Entrepreneurship Basics (Track 1)			Terzidis
WT 23/24	7900087	Entrepreneurship Basics (Track 2)			Terzidis
WT 23/24	7900138	Seminar in Marketing and Sales (Bachelor)			Klarmann
WT 23/24	7900146	Entrepreneurship Seasonal School			Terzidis
WT 23/24	7900157	Seminar Human Resources and Organizations (Bachelor)			Niekens
WT 23/24	7900161	Seminar Human Resource Management (Bachelor)			Niekens
WT 23/24	7900168	Bachelor Seminar in Data Science and Machine Learning			Geyer-Schulz
WT 23/24	7900175	Seminar in Finance: Personal Finance			Uehrig-Homburg
WT 23/24	7900203	Seminar "Finance in a nutshell"			Uehrig-Homburg
WT 23/24	7900233	Research Seminar: Human-Centered Systems			Mädche
WT 23/24	7900315	Seminar Financial Economics: Macro Finance			Thimme
WT 23/24	7900335	Seminar Energy Economics IV			Fichtner
WT 23/24	79-2579911-B	Seminar Management Accounting - Special Topics (Bachelor) - Porsche			Wouters
WT 23/24	79-2579919-B	Seminar Management Accounting - Sustainability Topics (Bachelor)			Wouters
WT 23/24	7981976	Seminar in Production and Operations Management I			Schultmann

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Entrepreneurship Seasonal School
2500215, WS 23/24, 2 SWS, Language: English, Open in study portal

Block (B) On-Site
Content
During the Entrepreneurship Seasonal School, students develop a business model based on innovative technologies and social problems in workshops in international teams for one week.

Course Content:
The Entrepreneurship Seasonal School brings together students from different universities to spend a week strengthening their knowledge of digital entrepreneurship in healthcare. Experience the life of an entrepreneur and learn how to attain resources to realize a product vision. During one week, you will develop a range of entrepreneurial competences crucial for establishing a successful venture. Our primary focus is on digital healthcare ventures, granting you the opportunity to delve into the realm of entrepreneurship within the healthcare system. By gaining a deep understanding of healthcare needs, you will utilize creativity techniques to uncover potential business ideas that provide value for patients and doctors. Additionally, you will learn how to create viable business models, dive into health regulations, and pitch your idea to a jury.

In WS 2023/24 the one-week program is being hosted by the Karlsruhe Institute of Technology, with co-teaching support from the Eucor partners University of Basel and the University of Strasbourg.

In the seminar you will work on a project in teams of max. 5 persons.

Learning Objectives:
After attending the event, you will be able to...
- describe the role of entrepreneurship
- develop innovative and technology-based solutions for societal problems,
- develop a viable business model for a problem,
- present a business idea to a panel of judges,
- and be empowered to work independently in multidisciplinary and multicultural teams

Organizational issues
19.02.24 – 23.02.24, Details will be announced later. Registration via wiwi portal.

Content
Within this seminar eLearning videos are produced to different topics out of the contents of our lectures. The student gets in touch with scientific work. Through profound working on a specific scientific topic the student is meant to learn the foundations of scientific research and reasoning in particular in finance. Through conduction of the video the student becomes familiar with the fundamental techniques for presentations and foundations of scientific reasoning. In addition, the student earns rhetorical skills.

The success is monitored by the development of an eLearning video and by the writing of a project report (according to §4(2), 3 SPO).

The overall grade is made up of these partial performances.

Recommendations:
Knowledge of the content of the modules Essentials of Finance [WW3BWLFBV1] (for bachelor students) and F1 (Finance) [WW4BWLFBV1] (for master students) is assumed.

The total workload for this course is approximately 90 hours. For further information see German version.

Organizational issues
Zwischenpräsentation am 11.12.23, 16 Uhr und Abschlusspräsentation am 23.01.24, 17:30 Uhr, beides am Campus B (Geb. 09.21), Raum 209

Content
wird auf deutsch und englisch gehalten

Organizational issues
Blockveranstaltung, siehe WWW

Content
The eLearning videos are produced to different topics from the contents of our lectures. The student gets in touch with scientific work. Through profound working on a specific scientific topic, the student is meant to learn the foundations of scientific research and reasoning in particular in finance. Through conduction of the video, the student becomes familiar with the fundamental techniques for presentations and foundations of scientific reasoning. In addition, the student earns rhetorical skills.

The success is monitored by the development of an eLearning video and by the writing of a project report (according to §4(2), 3 SPO).

The overall grade is made up of these partial performances.

Recommendations:
Knowledge of the content of the modules Essentials of Finance [WW3BWLFBV1] (for bachelor students) and F1 (Finance) [WW4BWLFBV1] (for master students) is assumed.

The total workload for this course is approximately 90 hours. For further information see German version.

Organizational issues
Zwischenpräsentation am 11.12.23, 16 Uhr und Abschlusspräsentation am 23.01.24, 17:30 Uhr, beides am Campus B (Geb. 09.21), Raum 209

Content
wird auf deutsch und englisch gehalten

Organizational issues
Blockveranstaltung, siehe WWW

Bachelor Seminar in Data Science and Machine Learning
2540524, WS 23/24, 2 SWS, Language: German, Open in study portal
Literature
Weiterführende Literatur:

Entrepreneurship Basics (Track 1)
2545010, WS 23/24, 2 SWS, Language: English, [Open in study portal]

Seminar (S)
Blended (On-Site/Online)

Content
Course Content:
This seminar explains important factors for becoming an entrepreneur and guides you through a structured process from the first business idea to a pitch of your final business model. Therefore, a business idea will be developed in the context of the UN Sustainable Development Goals. In small teams you create, develop, validate and present your business model. It simulates the basics of a start-up process up to the investor pitch.

Learning Objectives
After completing this course, the course participants will be able to

- Reflect on and define your personal and team core values
- Reflect on and define your personal and team competencies
- Reflect on and recall a definition for business opportunity
- Define your field of interest for opportunity recognition using the UN SDGs
- Analyze a specific domain to identify business opportunities
- Develop a first draft for your business model by using the Business Model Canvas
- Pitch / present your business idea

Credentials:
Registration is via the Wiwi portal.

Exam:
Presentation + active participation + paper.

Target group:
Bachelor students

Organizational issues
Registration is via the Wiwi portal.

In the seminar you will work on a project in teams of max. 5 persons. The groups are formed in the seminar

Entrepreneurship Basics (Track 2)
2545011, WS 23/24, 2 SWS, Language: English, [Open in study portal]

Seminar (S)
Blended (On-Site/Online)
Content

Course Content:
The seminar introduces the basics of planning and modeling of business ideas. Based on a structured process, you will be guided through the development of your own business ideas, the derivation and testing of initial business model hypotheses, and the final creation of a business plan. In small teams you will create, develop, validate and present your business model. The basic steps of a start-up process are simulated.

Learning Objectives
After completing this seminar, students will have learned and actually practiced the whole business model development process. In particular this means that students will know:

- how business ideas are created and how they can be developed
- what the value proposition of a business idea is
- how a business model hypothesis can be generated and tested
- which successful business model patterns exist and how they can be used for one’s own business
- how to pitch business ideas and convince potential investors

Credentials:
Registration is via the Wiwi portal.

Exam:
Presentation + active participation + paper.

Target group:
Bachelor students

Organizational issues
Registration is via the Wiwi portal.

In the seminar you will work on a project in teams of 4-5 persons. The groups are formed in the seminar.
Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Blockveranstaltung siehe Homepage

Seminar Management Accounting - Special Topics
2579911, WS 23/24, 2 SWS, Language: English, Open in study portal

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively predisibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources.

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Note:
- Maximum of 12 students.

Organizational issues
Ort und Zeit werden noch bekannt gegeben bzw. über ILIAS

Literature
Will be announced in the course.
Seminar Management Accounting - Sustainability Topics

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:

- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Examination:

- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:

- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Workload:

- The total workload for this course is approximately 90 hours. For further information see German version.

Note:

- Maximum of 8 students.

Organizational issues
Ort und Zeit werden noch bekannt gegeben bzw. über ILIAS

Literature
Will be announced in the course.

Design Seminar: Digital Citizen Science

Content
TBA

Human-Centered Systems Seminar: Engineering

Content
Formerly known as "Current Topics in Digital Transformation"

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the human-centered systems lab (Prof. Mädche). Students will work on a dedicated topic in the context of human-centered systems and apply a pre-defined research method. A broad spectrum of topics is offered every semester, topics may range from creating an experimental design, analyzing collected data, or systematically comparing existing software prototypes in a specific field of interest.

User-Adaptive Systems Seminar
Content
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (h-lab, Prof. Mädche). It is offered as part of the DFG-funded graduate school "KD2School: Designing Adaptive Systems for Economic Decisions“ (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organizational issues
Termine werden bekannt gegeben

Literature
Required literature will be made available in the seminar.

Human-Centered Systems Seminar: Research
2540557, SS 2024, 3 SWS, Language: English, Open in study portal

Seminar (S)
Blended (On-Site/Online)
Content
Formerly known as "Information Systems and Service Design Seminar"

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group IS I (Prof. Mädche). The research group "Information Systems I" (IS I) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites

No specific prerequisites are required for the seminar.

Literature

Further literature will be made available in the seminar.

Organizational issues

Termine werden bekannt gegeben

Entrepreneurship Basics (Track 1)
2545010, SS 2024, 2 SWS, Language: English, Open in study portal
Seminar (S) On-Site

Content

This seminar explains important factors for becoming an entrepreneur and guides you through a structured process from the first business idea to a pitch of your final business model. Therefore, a business idea will be developed in the context of the UN Sustainable Development Goals. In small teams you create, develop, validate and present your business model. It simulates the basics of a start-up process up to the investor pitch.

Learning Objectives

After completing this course, the course participants will be able to

- Reflect on and define your personal and team core values
- Reflect on and define your personal and team competencies
- Reflect on and recall a definition for business opportunity
- Define your field of interest for opportunity recognition using the UN SDGs
- Analyze a specific domain to identify business opportunities
- Develop a first draft for your business model by using the Business Model Canvas
- Pitch / present your business idea

Exam:

Presentation + active participation + paper.

Target group:

Bachelor students
Organizational issues
Registration is via the Wiwi-Portal.
In the seminar you will work on a project in teams of max. 5 persons. The groups are formed in the seminar.

Entrepreneurship Basics (Track 2)
2545011, SS 2024, 2 SWS, Language: English, Open in study portal

Content
Course Content:
This seminar shows what is important for entrepreneurs and it guides you through a structured process from the first business idea to a pitch of your final business model. In teams you create, develop, validate and present your business model. It partially simulates a start-up process up to the investor pitch.

Starting with a rough business idea, you learn to understand and validate the customer problems. Together with your teammates and the feedback from the other teams and the lecturer, you will create a sharp business model by using tools like the Value Proposition Canvas, the Business Model Canvas and customer interviews. With some further information about rapid prototyping and structuring a pitch and a one-pager for business angels, you will learn, how to present the developed business. This seminar is teamwork. You grow as a team, learn to communicate and to work efficient in a team so all your results (the pitch and the written outline) are presented by the team.

Learning Objectives
- Learning of entrepreneurial skills.
- Understanding of value creation importance.
- Experience on how to derive and test hypothesis.
- Transition from ideas to a business model that works.
- Learning how to pitch and to convince investors.

Exam:
Presentation + active participation + paper.

Target group:
Bachelor students

Organizational issues
Saturday, 20.04.2024, 10.00 - 17.00
Saturday, 04.05.2024, 10.00 - 17.00
Saturday, 01.06.2024, 10.00 - 12.30

Registration is via the Wiwi-Portal.
In the seminar you will work on a project in teams of max. 5 persons. Team applications are welcome but not a prerequisite for participation.

Seminar Management Accounting - Special Topics
2579909, SS 2024, 2 SWS, Language: English, Open in study portal
Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:
- Maximum of 16 students.

Organizational issues
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature
Will be announced in the course.

Seminar Management Accounting - Sustainability Topics
2579919, SS 2024, 2 SWS, Language: English, Open in study portal
8.221 Course: Seminar in Economics (Bachelor) [T-WIWI-103487]

Responsible: Professorenschaft des Fachbereichs Volkswirtschaftslehre
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2500051</td>
<td>Examination of another type</td>
<td>3</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>The Challenges of the Mobility Transition in Urban Areas - Which Contributions Can Be Expected from the Serious Game "MobileCityGame"?</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Szimba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2500052</td>
<td>Seminar on Topics in Digital Economics</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Reiß, Hillenbrand, Potarca</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2520367</td>
<td>Strategische Entscheidungen</td>
<td>Seminar</td>
<td>Ehrhart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2520405</td>
<td>Topics in Experimental Economics</td>
<td>Seminar / 🗣</td>
<td>Reiß, Peters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2520561</td>
<td>Wirtschaftstheoretisches Seminar I (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>Puppe, Ammann, Kretz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2520562</td>
<td>Wirtschaftstheoretisches Seminar II (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>Puppe, Ammann, Kretz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2521310</td>
<td>Topics in Econometrics</td>
<td>Seminar</td>
<td>Schienle, Rüter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2560130</td>
<td>Seminar Public Finance</td>
<td>Seminar / 🗣</td>
<td>Wigger, Setio, Schmelzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2560140</td>
<td>Lying and Cheating in Economic Experiments (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>Rau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2560141</td>
<td>AI and Digitization for Society (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>Zhao</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2560145</td>
<td>Disruption and the Digital Economy: Markets, Strategies, and Society (Bachelor)</td>
<td>Seminar / 🗣</td>
<td>Rosar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2560400</td>
<td>Seminar in Macroeconomics I</td>
<td>Seminar / 🗣</td>
<td>Brumm, Krause, Pegorari, Hußmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2560401</td>
<td>Seminar in Macroeconomics II</td>
<td>Seminar / 🗣</td>
<td>Brumm, Krause, Pegorari, Hußmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2561208</td>
<td>Selected aspects of European transport planning and -modelling</td>
<td>Seminar</td>
<td>Szimba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2500004</td>
<td>Predictive Data Analytics - An Introduction to Statistical Machine Learning</td>
<td>Seminar / 🗣</td>
<td>Schienle, Lerch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2500009</td>
<td>Seminar in Economic Theory I</td>
<td>Seminar / 🗣</td>
<td>Ammann, Kretz, Okulicz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2520367</td>
<td>Strategische Entscheidungen</td>
<td>Seminar / 🗣</td>
<td>Ehrhart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2520535</td>
<td>Seminar in Economic Theory I</td>
<td>Seminar / 🗣</td>
<td>Ammann, Kretz, Okulicz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2560130</td>
<td>Seminar Public Finance</td>
<td>Block / 🗣</td>
<td>Wigger, Schmelzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2560241</td>
<td>Digital IT Solutions and Services transforming the Field of Public Transportation</td>
<td>Seminar</td>
<td>Janoshalmi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2560259</td>
<td>Organisation and Management of Development Projects</td>
<td>Seminar / 🗣</td>
<td>Sieber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024 2560400</td>
<td>Seminar in Macroeconomics I</td>
<td>Seminar / 🗣</td>
<td>Brumm, Krause, Pegorari</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ST 2024 2560553 Seminar Shaping AI and Digitization for Society (Bachelor) 2 SWS Seminar / Online Zhao

Exams
WT 23/24 7900124 Seminar Lying and Cheating in Economic Experiments (Bachelor) Puppe
WT 23/24 7900139 Selected Aspects of European Transport Planning and Modelling Mitusch
WT 23/24 7900212 Seminar: Debt The First 5000 Years (Bachelor) Puppe
WT 23/24 7900298 Seminar Disruption in the Digital Economy (Bachelor) Puppe
WT 23/24 7900354 Die Herausforderungen der Mobilitätswende im urbanen Bereich - welche Beiträge kann das Serious Game "MobileCityGame" liefern? Mitusch

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:
- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Topics in Experimental Economics
2520405, WS 23/24, SWS, Language: English, Open in study portal

Organizational issues
(im WS2021/22 online; sonst Blockseminar; Blücherstraße 17); Termine werden separat bekannt gegeben

Literature
Als Pflichtliteratur dienen ausgewählte Paper.

Topics in Econometrics
2521310, WS 23/24, 2 SWS, Language: German, Open in study portal
Organizational issues
Blockveranstaltung. Termine werden auf Homepage und über Ilias bekannt gegeben

Lying and Cheating in Economic Experiments (Bachelor)

2560140, WS 23/24, 2 SWS, Language: English, Open in study portal

Seminar (S)

On-Site

Content

For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues

Application is possible via https://portal.wiwi.kit.edu/Seminare

Kick-off: 24.10.23, 15.00 - 16.30 h, Geb. 01.85, KD2 Lab (1. OG über Außentreppe), Teamraum

Präsentationen: 08.01.2024 08.00 - 13.00 h, KD2 Lab (1. OG über Außentreppe), Teamraum

AI and Digitization for Society (Bachelor)

2560141, WS 23/24, 2 SWS, Language: English, Open in study portal

Seminar (S)

Blended (On-Site/Online)

Content

For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues

Application is possible via https://portal.wiwi.kit.edu/Seminare

Kick-off: 25.10.2023, 11.00 - 12.00 (online)

Presentations: 12.01.2024, 08.00 - 13.00 h, Geb. 01.85, KD2Lab (1. OG über Außentreppe), Teamraum

Disruption and the Digital Economy: Markets, Strategies, and Society (Bachelor)

2560145, WS 23/24, 2 SWS, Language: English, Open in study portal

Seminar (S)

On-Site

Content

For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues

Application is possible via https://portal.wiwi.kit.edu/Seminare

Kick-off: 27.10.2023, 14.00 - 15.30 Uhr, Geb. 01.85, KD2Lab (1. OG über Außentreppe), Teamraum

Präsentationen: 15.01.2024 09.00 - 13.00 Uhr, Geb. 01.85, KD2Lab (1. OG über Außentreppe), Teamraum

Predictive Data Analytics - An Introduction to Statistical Machine Learning

2500004, SS 2024, 2 SWS, Language: German/English, Open in study portal

Seminar (S)

On-Site
Organizational issues
Blockveranstaltung. Termine werden bekannt gegeben

Seminar Public Finance
2560130, SS 2024, 2 SWS, Language: German, Open in study portal
Block (B) Blended (On-Site/Online)

Content
See German version.

Organizational issues
Termine werden bekannt gegeben.

Literature
Literatur wird zu Beginn des jeweiligen Seminars vorgestellt.

Seminar Shaping AI and Digitization for Society (Bachelor)
2560553, SS 2024, 2 SWS, Language: English, Open in study portal
Seminar (S) Blended (On-Site/Online)

Content
Participation will be limited to 12 students.
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.
Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare
The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.
Grading: Seminar Papers of 8–10 pages are to be handed in.
Students' grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (60%). Students can improve their grades by actively participating in the discussions of the presentations.
Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Registration via WIWi-Portal
Blockveranstaltungen:
Introductory Meeting April 17 (online)
Seminar Presentations June 14 (in person) KD2Lab Team Room
8.222 Course: Seminar in Engineering Science Master (approval) [T-WIWI-108763]

Responsibility: Fachvertreter ingenieurwissenschaftlicher Fakultäten
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
See German version.

Prerequisites
See module description.

Recommendation
None
8.223 Course: Seminar in Informatics (Bachelor) [T-WIWI-103485]

Responsible: Professorenschaft des Instituts AIFB
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Machine Learning on Graphs (Bachelor)</td>
<td>Seminar / 🗣️</td>
<td>Shao, Färber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Data-driven Simulation for Industrial Systems (Master)</td>
<td>2 SWS</td>
<td>Lazarova-Molnar, Götz, Khodadadi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Programming 3 (Bachelor)</td>
<td>2 SWS</td>
<td>Oberweis, Fritsch, Frister, Forell, Rybinski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Information security and Data protection (Bachelor)</td>
<td>2 SWS</td>
<td>Oberweis, Volkamer, Raabe, Schiefer, Hennig, Sterz, Veit, Ballreich, Mossano</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Linked Data and the Semantic Web (Bachelor)</td>
<td>3 SWS</td>
<td>Färber, Käfer, Braun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Bachelor)</td>
<td>3 SWS</td>
<td>Färber, Höllig, Thoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Master)</td>
<td>3 SWS</td>
<td>Färber, Hollig, Thoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar Knowledge Discovery and Data Mining (Bachelor)</td>
<td>3 SWS</td>
<td>Färber, Käfer, Thoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Bachelor)</td>
<td>2 SWS</td>
<td>Färber, Käfer, Thoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar Emerging Trends in Internet Technologies (Bachelor)</td>
<td>2 SWS</td>
<td>Sunyaev, Toussaint, Brecker, Danylak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar Emerging Trends in Digital Health (Bachelor)</td>
<td>2 SWS</td>
<td>Sunyaev, Toussaint, Brecker, Danylak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Cognitive Automobiles and Robots</td>
<td>2 SWS</td>
<td>Schneider, Zöllner, Daaboul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>User-Adaptive Systems Seminar</td>
<td>2 SWS</td>
<td>Mädche, Beigl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Type</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Seminar Linked Data and the Semantic Web (Bachelor)</td>
<td>Färber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Programming 3 (Bachelor)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Security and Privacy Awareness</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar IT Security and Privacy (Bachelor)</td>
<td>Oberweis, Volkamer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Bachelor)</td>
<td>Färber</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar Knowledge Discovery and Data Mining (Bachelor)</td>
<td>Käfer</td>
</tr>
<tr>
<td>ST 2024</td>
<td>User-Adaptive Systems Seminar</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
Placeholder for seminars offered by the Institute AIFB. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Machine Learning on Graphs (Bachelor)
2500046, WS 23/24, SWS, Language: English, Open in study portal

Content
Graph representation learning deals with capturing and understanding the complex relationships and patterns inherent in graph-structured data. It focuses on developing techniques and algorithms to extract meaningful representations from graphs, enabling tasks such as node classification, link prediction, community detection, and graph generation. This seminar will cover the fundamental concepts of graph representation learning, such as knowledge graphs, graph theory, and graph spectral theory. Additionally, you will have the chance to engage in collaborative reading of recent technical reports and research papers with your peers, encompassing machine learning algorithms pertaining to large language models, knowledge embedding, and social attribute prediction.

Seminar Programming 3 (Bachelor)
2513200, WS 23/24, 2 SWS, Open in study portal

Content
Registration information and the content of the seminar will be announced on the course page. Only bachelor students are allowed to attend this seminar.

Seminar Linked Data and the Semantic Web (Bachelor)
2513312, WS 23/24, 3 SWS, Language: German/English, Open in study portal
Content
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this practical seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this practical seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as ‘Block-Seminar’.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Seminar Real-World Challenges in Data Science and Analytics (Bachelor)
2513314, WS 23/24, 3 SWS, Language: German/English, Open in study portal

Content
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master’s programs.

The exact dates and information for registration will be announced at the course page.

Seminar Real-World Challenges in Data Science and Analytics (Master)
2513315, WS 23/24, 3 SWS, Language: German/English, Open in study portal

Content
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master’s programs.

The exact dates and information for registration will be announced at the course page.

Seminar Knowledge Discovery and Data Mining (Bachelor)
2513308, SS 2024, 3 SWS, Language: English, Open in study portal
Content
In this seminar different machine learning and data mining methods are implemented.
The seminar includes different methods of machine learning and data mining. Participants of the seminar should have basic knowledge of machine learning and programming skills.
Domains of interest include, but are not limited to:

- Medicine
- Social Media
- Finance Market
- Scientific Publications

Further Information: https://aifb.kit.edu/web/Lehre/Praktikum_Knowledge_Discovery_and_Data_Science
The exact dates and information for registration will be announced at the event page.

Organizational issues
Die Anmeldung erfolgt über das WiWi Portal https://portal.wiwi.kit.edu/.
Für weitere Fragen bezüglich des Seminar und der behandelten Themen wenden Sie sich bitte an die entsprechenden Verantwortlichen.

Literature
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B.aus den folgenden Lehrbüchern:

- Mitchell, T.; Machine Learning

Seminar Data Science & Real-time Big Data Analytics (Bachelor)
2513310, SS 2024, 2 SWS, Language: English, Open in study portal

Content
In this seminar, students will design applications in teams that use meaningful and creative Event Processing methods. Thereby, students have access to an existing record.
Event processing and real-time data are everywhere: financial market data, sensors, business intelligence, social media analytics, logistics. Many applications collect large volumes of data in real time and are increasingly faced with the challenge of being able to process them quickly and react promptly. The challenges of this real-time processing are currently also receiving a great deal of attention under the term “Big Data”. The complex processing of real-time data requires both knowledge of methods for data analysis (data science) and their processing (real-time analytics). Seminar papers are offered on both of these areas as well as on interface topics, the input of own ideas is explicitly desired.
Further information to the seminar is given under the following Link:
http://seminar-cep.fzi.de
Questions are answered via the e-mail address sem-ep@fzi.de.

Organizational issues
Questions are answered via the e-mail address sem-ep@fzi.de.

Cognitive Automobiles and Robots
2513500, SS 2024, 2 SWS, Language: German/English, Open in study portal
Content
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.
Registration and further information can be found in the WiWi-portal.

User-Adaptive Systems Seminar
2540553, SS 2024, 2 SWS, Language: English, Open in study portal
Blended (On-Site/Online)

Content
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (h-lab, Prof. Mädche). It is offered as part of the DFG-funded graduate school "KD2School: Designing Adaptive Systems for Economic Decisions" (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organizational issues
Termine werden bekannt gegeben

Literature
Required literature will be made available in the seminar.
8.224 Course: Seminar in Mathematics (Bachelor) [T-MATH-102265]

Responsible: Dr. Martin Folkers
Prof. Dr. Günter Last

Organisation: KIT Department of Mathematics

Part of: M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Seminar in Operations Research (Bachelor) [T-WIWI-103488]

Responsible:
Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Seminar on Methodical Foundations of Operations Research (B)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Stein, Beck, Schwarze</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar on Trending Topics in Optimization and Machine Learning (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Rebennack, Warwicker</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar on Energy and Power Systems Optimization (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Rebennack, Warwicker</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Nickel, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Nickel, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar on Methodical Foundations of Operations Research (B)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Stein, Beck, Schwarze</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar on Mathematical Optimization (MA)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Stein, Beck, Schwarze</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Seminar in Operations Research B (Bachelor)</td>
<td></td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar in Operations Research A (Master)</td>
<td></td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Trending Topics in Optimization and Machine Learning (Bachelor)</td>
<td></td>
<td></td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar on Power Systems Optimization (Bachelor)</td>
<td></td>
<td></td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar Modern OR and Innovative Logistics</td>
<td></td>
<td></td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar Modern OR and Innovative Logistics</td>
<td></td>
<td></td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar in Operations Research A (Master)</td>
<td></td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Seminar in Operations Research (Bachelor)</td>
<td></td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)
Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Seminar on Methodical Foundations of Operations Research (B)
2550131, WS 23/24, 2 SWS, Language: German, Open in study portal
Seminar (S) On-Site

Content
The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.

Bachelor students are introduced to the style of scientific work. By focussed treatment of a scientific topic they deal with the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.

With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetorical abilities may be improved.

Remarks:
Attendance at all oral presentations is compulsory.

Preferably at least one module offered by the Institute of Operations Research should have been chosen before attending this seminar.

Assessment:
The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation. The grade is composed of the equally weighted assessments of the paper and the oral presentation.

The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the oral presentation.

Workload:
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Die Literatur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbereitung bekannt gegeben.

References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a preparatory meeting.

Seminar: Modern OR and Innovative Logistics
2550491, WS 23/24, 2 SWS, Language: German, Open in study portal
Seminar (S) Blended (On-Site/Online)

Content
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Organizational issues
Anmeldezeitraum: 11.09.23 bis 30.09.23 im Wiwi Portal

Literature
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Seminar: Modern OR and Innovative Logistics
2500028, SS 2024, 2 SWS, Language: German, Open in study portal
Seminar (S) Blended (On-Site/Online)
Content
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Organizational issues
Anmeldung erfolgt über das Wiwi-Portal. Nähere Informationen hierzu finden Sie hier zu einem späteren Zeitpunkt.

Literature
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

| Seminar on Methodical Foundations of Operations Research (B) |
| 2550131, SS 2024, 2 SWS, Language: German, [Open in study portal](#) |

Content
The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.

Bachelor students are introduced to the style of scientific work. By focussed treatment of a scientific topic they deal with the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.

With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetoric abilities may be improved.

Remarks:
Attendance at all oral presentations is compulsory.
Preferably at least one module offered by the Institute of Operations Research should have been chosen before attending this seminar.

Assessment:
The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation. The grade is composed of the equally weighted assessments of the paper and the oral presentation.

The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the oral presentation.

Workload:
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Die Literatur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbesprechung bekannt gegeben.

References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a preparatory meeting.
Course: Seminar in Statistics (Bachelor) [T-WIWI-103489]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>23/24</td>
<td>2500018 Topics in Econometrics</td>
<td>S</td>
<td>2 SWS</td>
<td>Seminar / Grothe, Kaplan, Liu</td>
</tr>
<tr>
<td>WT</td>
<td>23/24</td>
<td>2521310 Topics in Econometrics</td>
<td>S</td>
<td>2 SWS</td>
<td>Seminar / Schienle, Rüter</td>
</tr>
<tr>
<td>ST</td>
<td>2024</td>
<td>2500004 Predictive Data Analytics - An</td>
<td>S</td>
<td>2 SWS</td>
<td>Seminar / Schienle, Lerch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Statistical Machine Learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>2024</td>
<td>2521310 Advanced Topics in Econometrics</td>
<td>S</td>
<td>2 SWS</td>
<td>Seminar / Schienle, Krüger, Buse, Rüter, Bracher</td>
</tr>
<tr>
<td>ST</td>
<td>2024</td>
<td>2550560 Spezielle Themen zu Statistik,</td>
<td>S</td>
<td>2 SWS</td>
<td>Seminar / Grothe, Kaplan, Liu, Rieger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Datenanalyse und maschinellem Lernen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>23/24</td>
<td>7900254 Topics in Econometrics, Seminar in Economics (Bachelor)</td>
<td>S</td>
<td>Schienle</td>
</tr>
<tr>
<td>WT</td>
<td>23/24</td>
<td>7900299 Seminar in Statistics (Bachelor)</td>
<td>S</td>
<td>Grothe</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Topics in Econometrics

2521310, WS 23/24, 2 SWS, Language: German, Open in study portal

Organizational issues

Blockveranstaltung. Termine werden auf Homepage und über Ilias bekannt gegeben.
Predictive Data Analytics - An Introduction to Statistical Machine Learning
2500004, SS 2024, 2 SWS, Language: German/English, Open in study portal
Seminar (S) On-Site

Organizational issues
Blockveranstaltung, Termine werden bekannt gegeben

Advanced Topics in Econometrics
2521310, SS 2024, 2 SWS, Language: German/English, Open in study portal
Seminar (S)

Organizational issues
Blockveranstaltung, Termine werden bekannt gegeben
Course: Seminar Production Technology [T-MACH-109062]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Prof. Dr.-Ing. Gisela Lanza
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2149665</td>
<td>Seminar Production Technology</td>
<td>Seminar / Blended (On-Site/Online)</td>
<td>1 SWS</td>
<td></td>
<td>Each term</td>
<td>Fleischer, Lanza, Schulze, Zanger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-109062</td>
<td>Seminar Production Technology</td>
<td>Seminar Production Technology</td>
<td>Fleischer, Lanza, Schulze</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-109062</td>
<td>Seminar Production Technology</td>
<td>Seminar Production Technology</td>
<td>Fleischer, Lanza, Schulze</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative test achievement (graded):

- written elaboration (workload of at least 80 h)
- oral presentation (approx. 30 min)

Prerequisites

none

Annotation

The specific topics are published on the homepage of the wbk Institute of Production Science.

Below you will find excerpts from events related to this course:
Content
In course of the seminar Production Technology current issues of the wbk main fields of research "Manufacturing and Materials Technology", "Machines, Equipment and Process Automation" as well as "Production Systems" are discussed.
The specific topics are published on the homepage of the wbk Institute of Production Science.

Learning Outcomes:
The students …
- are in a position to independently handle current, research-based tasks according to scientific criteria.
- are able to research, analyze, abstract and critically review the information.
- can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Workload:
regular attendance: 10 hours
self-study: 80 hours

Organizational issues
siehe http://www.wbk.kit.edu/seminare.php
8.228 Course: Seminar: Legal Studies I [T-INFO-101997]

Responsible: N.N.

Organisation: KIT Department of Informatics

Part of: M-WIWI-101816 - Seminar Module

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination of another type</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Data in Software-Intensive Technical Systems – Modeling – Analysis – Protection</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EU Digital Regulatory Framework</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Smart) City in and as a Network</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Seminar Information security and Data protection (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Governance, Risk & Compliance</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Intelligente Chatbots und Recht</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Generative) KI und Recht</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>„Vom Original zur Kopie und vom Analogen zum Digitalen“</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rechtlicher Rahmen für die Europäische Datenökonomie</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rechtlicher Rahmen für Künstliche Intelligenz</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Current Issues in Patent Law</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination of another type</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Seminar: Legal Studies II</td>
<td>Zufall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar: Legal Studies II</td>
<td>Zufall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar Data in Software-Intensive Technical Systems – Modeling – Analysis – Protection</td>
<td>Reussner, Raabe, Sattler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar: Legal Studies I</td>
<td>Zufall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar: Legal Studies I</td>
<td>Zufall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, _PANEL Blended (On-Site/Online), 🗣 On-Site, ❗ Cancelled

 Below you will find excerpts from events related to this course:

EU Digital Regulatory Framework

2400184, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
Content
This class aims to provide an overview on the legal instruments forming the EU digital regulatory framework. Following its Digital Single Market Strategy, the EU has set up a new strategic programme for a "Digital Decade". Existing regulations like the General Data Protection Regulation (GDPR), or the E-Commerce Directive, are being complemented by a variety of new instruments that aim to set binding rules on online markets, to regulate data flows in various ways, but also to pioneer a legal framework on AI. Prominent instruments include the new AI Act (proposal), the Digital Services Act (DSA) and Digital Markets Act (DMA), the Data Act, Data Governance Act, or Open Data Directive.

The class will provide an overview on the existing framework: Which regulations and directives are relevant? How do they apply and interact which each other in a broader context?

Another objective is to provide students with the ability to read these legal instruments: How to access regulatory instruments that often have more than 100 pages (without having to read every single sentence)? How to gain a comprehensive, high-level understanding of the instrument? How to identify parts relevant to a particular legal problem?

The class will start with an introduction into EU law and regulatory instruments in general. Concrete guidance on reading, analysing and working with legal instruments in English will be given. Based on these instructions, students will be assigned legal instruments to present in the final unit along with a two-pages report.

Grades will be assigned based on the quality of these presentations and the report, as well as participation in the discussion (presentation: 40 %, two-pages report: 40 %, discussion: 20 %).

Organizational issues
WS 2023/24
8.229 Course: Signals and Systems [T-ETIT-112860]

Responsible: Dr.-Ing. Mathias Kluwe
Prof. Dr.-Ing. Sander Wahls

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-106372 - Signals and Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

None
8.230 Course: Signals and Systems - Workshop [T-ETIT-112861]

Responsible: Dr.-Ing. Mathias Kluwe
Prof. Dr.-Ing. Sander Wahls

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-106372 - Signals and Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2302905 | Signals and Systems - Workshop | 1 SWS | Practical course / Wahls |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
8.231 Course: Simulation of Coupled Systems [T-MACH-105172]

Responsible: Prof. Dr.-Ing. Marcus Geimer

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101265 - Vehicle Development
- M-MACH-101267 - Mobile Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Year</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td></td>
<td>2114095</td>
<td>Simulation of Coupled Systems</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Geimer, Breitfuß</td>
<td>Online, Blended (On-Site/Online), 🗣 On-Site, X Cancelled</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Year</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td></td>
<td>76T-MACH-105172</td>
<td>Simulation of Coupled Systems</td>
<td></td>
<td></td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Retakes are offered at very ordinary examination date. A registration in mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

Prerequisites

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108888 must have been passed.

Recommendation

- Knowledge of ProE (ideally in actual version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

Annotation

After completion of course, students are able to:

- build a coupled simulation
- parametrize models
- perform simulations
- conduct troubleshooting
- check results for plausibility

The number of participants is limited.

Content:

- Basics of multi-body and hydraulics simulation programs
- Possibilities of coupled simulations
- Modelling and Simulation of Mobile Machines using a wheel loader
- Documentation of the result in a short report

Literature:

Software guide books (PDFs)
Information about wheel-type loader specifications

Below you will find excerpts from events related to this course:
Simulation of Coupled Systems
2114095, SS 2024, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
- Knowledge of the basics of multi-body and hydraulic simulation programs
- Possibilities of coupled simulations
- Development of a simulation model by using the example of a wheel loader
- Documentation of the result in a short report

It is recommended to have:
- Knowledge of ProE (ideally in current version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

- regular attendance: 21 hours
- total self-study: 92 hours

Literature
Weiterführende Literatur:
- Diverse Handbücher zu den Softwaretools in PDF-Form
- Informationen zum verwendeten Radlader
8.232 Course: Simulation of Coupled Systems - Advance [T-MACH-108888]

Responsible: Prof. Dr.-Ing. Marcus Geimer
Yusheng Xiang

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101265 - Vehicle Development
- M-MACH-101267 - Mobile Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Competence Certificate

Preparation of semester report

Prerequisites

none
Below you will find excerpts from events related to this course:

Artificial intelligence in the research process

5011011, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

Organizational issues

Diese Veranstaltung wird als Blockseminar angeboten.

When and why does polarization of opinion arise?

5011013, SS 2024, 2 SWS, Language: German, Open in study portal

Content

Numerous western countries experience rising opinion polarization. In particular in the US, it has been warned, growing opinion differences dominate public debate and put at risk democratic decision making. This seminar is concerned with the question why opinion distributions polarize and how too strong polarization can be overcome. To this end, central formal models of opinion dynamics are introduced and analyzed. Students are introduced to the method of agent-based modeling, using the software NetLogo. After the course, students will be able to implement, analyze, and understand these models. In an additional step, we will explore models’ predictions about possible intervention strategies targeted at decreasing polarization.
The future of democracy
5011019, SS 2024, 2 SWS, Language: German, Open in study portal

Content
Democracy is under threat. A significant and increasingly vocal segment of many Western societies feels disenfranchised by democratic institutions. Populist movements with overtly anti-democratic agendas are gaining traction and achieving electoral success. In this seminar, we will delve into strategies for addressing these challenges. What measures can be taken to address the root causes of populist appeal? Can regulating online social platforms be effective? How are efforts underway to bolster civil society, and what novel democratic mechanisms are emerging to enhance citizen engagement in legislative processes? What role can citizens' councils play, and what opportunities do digital deliberation platforms present? At the heart of our discussion lies the question: What research is necessary to conceive, evaluate, and refine new approaches to democracy? How can such research be conducted amidst the mounting pressures on democracy?

Organizational issues
Teilnehmende halten einen Kurzvortrag und erstellen einen Seminararbeit.
8.234 Course: Social Science B (WiWi) [T-GEISTSOZ-109049]

Responsible: Prof. Dr. Gerd Nollmann

Organisation: KIT Department of Humanities and Social Sciences

Part of: M-GEISTSOZ-101167 - Sociology/Empirical Social Research

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 5011011</td>
</tr>
<tr>
<td>WT 23/24 5011014</td>
</tr>
<tr>
<td>ST 2024 5000048</td>
</tr>
</tbody>
</table>

Exams

| **WT 23/24** 7400046 | Social Science B (WiWi) | Nollmann |
| **ST 2024** 7400455 | Social Science B (WiWi) | Nollmann |

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Below you will find excerpts from events related to this course:

Artificial intelligence in the research process

5011011, WS 23/24, 2 SWS, Language: German, Open in study portal

Seminar (S) Blended (On-Site/Online)

Content

Organizational issues

Diese Veranstaltung wird als Blockseminar angeboten.
8.235 Course: Special Topics in Information Systems [T-WIWI-109940]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101434 - eBusiness and Service Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Exams</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900263</td>
<td>Special Topics in Information Systems</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.
Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The overall grade is composed as follows:
A total of 60 points can be achieved, of which

- A maximum of 30 points for the written documentation
- A maximum of 30 points for the practical component

In order to pass the success control, at least 15 points (written documentation / practical component) must be achieved.

Prerequisites
see below

Recommendation
None

Annotation
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Systems course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre.

The Special Topics Information Systems is equivalent to the practical seminar, as it was only offered for the major in "Information Systems" so far. With this course students majoring in "Industrial Engineering and Management" and "Economics Engineering" also have the chance of getting practical experience and enhance their scientific capabilities.

The Special Topics Information Systems can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.
Course: Statistical Modeling of Generalized Regression Models [T-WIWI-103065]

Responsible: apl. Prof. Dr. Wolf-Dieter Heller

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101599 - Statistics and Econometrics
M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2521350</th>
<th>Statistical Modeling of Generalized Regression Models</th>
<th>2 SWS</th>
<th>Lecture</th>
<th>Heller</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7900146 (WS23/24)</th>
<th>Statistical Modeling of generalized regression models</th>
<th>Heller</th>
</tr>
</thead>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Below you will find excerpts from events related to this course:

Statistical Modeling of Generalized Regression Models
2521350, WS 23/24, 2 SWS, Open in study portal

Content
Learning objectives:
The student has profound knowledge of generalized regression models.

Requirements:
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016].

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
8.237 Course: Statistics I [T-WIWI-102737]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-100950 - Preliminary Exam
M-WIWI-101432 - Introduction to Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>4 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>4 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 120-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Below you will find excerpts from events related to this course:

Statistics I

2600008, SS 2024, 4 SWS, Language: German, Open in study portal
Lecture (V) On-Site

Content

Learning objectives:

Students understand and apply

- basic concepts of statistical data exploration as well as
- basic definitions and theorems of probability theory.

Content:

A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities
C. Random variables: location and shape parameters, dependency measures, concrete distribution models

Workload:

Total workload for 5 CP: approx. 150 hours
Attendance: 60 hours
Preparation and follow-up: 90 hours
Literatur
Skriptum: Kurzfassung Statistik I

Weiterführende Literatur:
Competence Certificate
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation.

The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Prerequisites
None

Recommendation
It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2610020].

Below you will find excerpts from events related to this course:

Statistics II
2610020, WS 23/24, 4 SWS, Language: German, Open in study portal

Content
Learning objectives:
The student

- understands and applies the basic definitions and theorems of probability theory,
- transfers these theoretical foundations to problems in parametrical mathematical statistics.

Content:
D. Sampling and Estimation Theory: Sampling distributions, estimators, point and interval estimation
E. Test Theory: General Principles of Hypothesis Testing, Concrete 1- and 2-Sampling Tests
F. Regression analysis: Simple and multiple linear regression, statistical inference

Requirements:
It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2610020].

Workload:
Total workload: 150 hours (5.0 Credits).
Attendance: 30 hours
Preparation and follow-up: 90 hours
Literature
Skriptum: Kurzfassung Statistik II

Weiterführende Literatur:
Course: Strategic Decision-Making in Global Production Network Design: A Seminar on Optimization and Simulation [T-MACH-113372]

Responsible: Martin Benfer
Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106590 - Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2150658 | Strategic Decision-Making in Global Production Network Design: A Seminar on Optimization and Simulation | 2 SWS | Seminar / On-Site | Lanza, Benfer |

Exams

| ST 2024 | 76-T-MACH-113372 | Strategic Decision-Making in Global Production Network Design: A Seminar on Optimization and Simulation | Lanza |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Canceled

Competence Certificate

The assessment takes the form of an examination with a different type of success check (in accordance with §4(2), 3 SPO). Here, the project work, the milestone-based presentation of the results in presentation form and a final presentation are included in the assessment.

Modeled Conditions

You have to fulfill one of 4 conditions:

1. The course T-MACH-110991 - Global Production must have been passed.
2. The course Dictionary Error: Id brick.0xA3AC1C68EFB1BE42AA0124EF058C4B64 in category mhbplus not found. - Dictionary Error: Id brick.0xA3AC1C68EFB1BE42AA0124EF058C4B64 in category mhbplus not found. must have been passed.
3. The course Dictionary Error: Id brick.0xFF01AD1CC608472499FFBD8AF8F27A7A in category mhbplus not found. - Dictionary Error: Id brick.0xFF01AD1CC608472499FFBD8AF8F27A7A in category mhbplus not found. must have been passed.
4. The course Dictionary Error: Id brick.0x57E73A50F7884F2D99BAA2A8A4F457EB in category mhbplus not found. - Dictionary Error: Id brick.0x57E73A50F7884F2D99BAA2A8A4F457EB in category mhbplus not found. must have been passed.

Recommendation

Participation in the following lectures:
- Integrated Production Planning in the Age of Industry 4.0 [2150660]
- Introduction to Operations Research I [2550040] + II [2530043]

Below you will find excerpts from events related to this course:
Content
The lecture “Strategic Decision Making in the Design of Global Production Networks: A Seminar in Optimization and Simulation” offers students a comprehensive insight into the application of quantitative models from operations research in global production networks. The course places special emphasis on practical applications and allows students to deepen their skills through a real-world use case during the semester.

The classroom sessions serve to convey important basics and to introduce and present the practice-relevant cases. In the self-study phase, the topics covered are worked on in greater depth. The curriculum covers various phases. Optimization techniques for network design are covered first, followed by simulation methods for network management. Subsequently, open questions are dealt with, e.g. from the consideration of uncertainty, sustainability aspects or the search for the overall optimum in the production network.

The students are divided into small groups to work together on the questions. The methods taught in the course are implemented in python. In order to strengthen the students’ presentation skills, regular presentations of interim results are planned. The progress made is supported by feedback and interaction with an internationally operating consulting firm.

The practical orientation of the course, combined with the application of quantitative models and the use of Python, enables students to prepare holistically for complex challenges in global production.

Learning Outcomes:
The Students are able to

1. put concepts of global production into practice:
 • Understand how global production networks can be implemented in real business scenarios.
 • Develop and implement strategies for adapting global production networks to specific business requirements.

2. in-depth knowledge and use of optimization in global production:
 • Develop an in-depth understanding of various optimization techniques in global production processes.
 • Apply optimization models to complex production networks and continuously improve them.

3. approach to improving network configuration, site selection and transportation routes:
 • Understand methods to evaluate and optimize production networks.
 • Effectively plan and improve site selection decisions and transportation routes.

4. deepen knowledge and use of simulations in global production:
 • Understand how simulations can be used as a tool to analyze and optimize global production processes.
 • Gain experience in the application of simulation techniques for modeling and analyzing production processes.

5. approach to improving delivery reliability:
 • Develop and implement strategies to improve delivery reliability.
 • Optimize processes that can affect delivery reliability.

6. consider uncertainties, aspects of sustainability and multidimensionality:
 • Recognize and manage uncertainties in global production environments.
 • Consider sustainability aspects and multidimensional challenges when making decisions in global production.

7. linking results and models:
 • Link models and analytical results to create holistic solutions to complex problems in global production.
 • Strengthen the ability to iteratively improve models based on real-world results.

8. presentations to management:
 • Present complex global manufacturing concepts to management in an understandable and persuasive manner.
 • Build confidence in the use of visual aids and effective communication techniques in front of management levels.

Workload:

regular attendance: ~ 30 hours
self-study: ~ 99 hours

Organizational issues
Aus organisatorischen Gründen ist die Teilnehmerzahl für die Lehrveranstaltung auf 20 Studierende begrenzt. Termine und Fristen zur Veranstaltung werden über die Homepage des wbk (https://www.wbk.kit.edu/studium-und-lehre.php) bekannt gegeben.

For organizational reasons the number of students is limited to 20. Dates and deadlines for the seminar will be announced via the homepage of wbk (https://www.wbk.kit.edu/studium-und-lehre.php).

Literature
Vorlesungsskript der Lehrveranstaltungen / Lecture notes of the courses:
Abele et al. (2008): Global Production [978-3-540-71652-5]
Friedli et al. (2021): Global Manufacturing Management: From Excellent Plants Toward Network Optimization [978-3-030-72739-0]
8.240 Course: Strategic Management [T-WIWI-113090]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101425 - Strategy and Organization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2577900</td>
<td>Strategic Management</td>
<td>2</td>
<td>Lecture</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900199</td>
<td>Management and Strategy</td>
<td></td>
<td></td>
<td>Lindstädt</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900067</td>
<td>Strategic Management</td>
<td></td>
<td></td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>7900067</td>
<td>Strategic Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) taking place at the beginning of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Strategic Management

2577900, SS 2024, 2 SWS, Language: German, Open in study portal
Content
Students learn central concepts of strategic management along the ideal-typical strategy process. An overview of fundamental frameworks and models will be provided and an action-oriented integration performance will be achieved through the transfer of theory to practical issues.

Through intensive exposure to real-world case studies, students will be encouraged to learn and apply strategic measures in a targeted manner in the real business world. The course features an action-oriented approach and provides students with a realistic understanding of the possibilities and limitations of rational design approaches.

Content in Keywords:
- Corporate governance and strategic management: concepts, levels, process.
- Strategic analysis: internal and external analysis
- Competitive strategy: formulation, evaluation and selection of strategic action alternatives at business unit level
- Strategic interaction and strategic commitment
- Corporate strategy: diversification strategy, M&A and management of the corporate portfolio
- Implementation of strategies in companies

Structure:
Lectures in the course are available to students online as recordings, while class dates are reserved for active discussion of real-world case studies.

Learning Objectives:
Upon completion of the course, students will be able to,
- Prepare strategic decisions along the ideal strategic process in a practical setting,
- Identify sources of competitive advantage,
- Explain interrelationships of companies in competition,
- Evaluate the portfolio management of companies,
- To classify actions and decisions of companies strategically,
- Apply knowledge from theoretical frameworks to the analysis of real-life situations.

Recommendations:
None.

Workload:
Total workload for 3.5 credit hours: approximately 105 hours.

Attendance: 30 hours
Self-study: 75 hours

Verification:
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as an open-book examination (examination performance of another kind according to SPO § 4 Abs. 2, Pkt. 3), or as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1).

It is expected that the exam will take place at the beginning of the semester's lecture-free period.

The examination is offered every semester and can be repeated at any regular examination date.

Literature

Die relevanten Auszüge und zusätzliche Quellen werden in der Veranstaltung bekannt gegeben.
8.241 Course: Structural and Phase Analysis [T-MACH-102170]

Responsible: Dr.-Ing. Susanne Wagner
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102170</td>
<td>Structural and Phase Analysis</td>
<td>Wagner, Hinterstein</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102170</td>
<td>Structural and Phase Analysis</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination

Prerequisites

none
8.242 Course: Supplement Applied Informatics [T-WIWI-110711]

Responsible: Professorenschaft des Instituts AIFB
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101426 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written or (if necessary) oral examination. Depending on the particular course associated with this placeholder a bonus on the examination grade is possible.

Prerequisites
None

Annotation
This course can be used in particular for the acceptance of external courses whose content is in the broader area of applied informatics, but is not equivalent to another course of this topic.
8.243 Course: Sustainable Vehicle Drivetrains [T-MACH-111578]

Responsible: Prof. Dr. Thomas Koch
Dr.-Ing. Olaf Toedter

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2</td>
<td>Sustainable Vehicle Drivetrains</td>
<td>2 SWS</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2</td>
<td>Sustainable Vehicle Drivetrains</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (approx. 20 minutes)

Prerequisites
none

Annotation
Starting in winter term 25/26, the course consists of a lecture (2h / week) and a tutorial (1 h / week).

Below you will find excerpts from events related to this course:

Sustainable Vehicle Drivetrains

2133132, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content
Sustainability
Environmental balance
Legislation
Alternative fuels
BEV
Fuel cell
Hybrid drives
Course: System Dynamics and Control Engineering [T-ETIT-101921]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-101156 - Control Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2303155</td>
<td>Systemdynamik und Regelungstechnik</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2303156</td>
<td>Tutorien zu 2303155 Systemdynamik und Regelungstechnik</td>
<td>Tutorial / Blended</td>
<td>Piscoll</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2303157</td>
<td>Übungen zu 2303155 Systemdynamik und Regelungstechnik</td>
<td>1 SWS</td>
<td>Practice / Online</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7303155</td>
<td>System Dynamics and Control Engineering</td>
<td></td>
<td>Hohmann</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7303155</td>
<td>System Dynamics and Control Engineering</td>
<td></td>
<td>Hohmann</td>
</tr>
</tbody>
</table>

Prerequisites:
none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Industrial Engineering and Management B.Sc.
Module Handbook as of 11/04/2024
8.245 Course: Systematic Materials Selection [T-MACH-100531]

Responsible: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101262 - Emphasis Materials Science

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>Systematic Materials Selection</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>5</td>
</tr>
<tr>
<td>ST 2024</td>
<td>Exercises in Systematic Materials Selection</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Systematic Materials Selection</td>
<td></td>
<td></td>
<td>Dietrich</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>Systematic Materials Selection</td>
<td></td>
<td></td>
<td>Dietrich</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment is carried out as a written exam of 2 h.

Prerequisites
none

Recommendation
Basic knowledge in materials science, mechanics and mechanical design due to the lecture Materials Science I/II.

Below you will find excerpts from events related to this course:

Systematic Materials Selection

2174576, SS 2024, 3 SWS, Language: German, Open in study portal

Lecture (V)
On-Site
Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered:

- Information and introduction
- Necessary basics of materials
- Selected methods / approaches of the material selection
- Examples for material indices and materials property charts
- Trade-off and shape factors
- Sandwich materials and composite materials
- High temperature alloys
- Regard of process influences
- Material selection for production lines
- Incorrect material selection and the resulting consequences
- Abstract and possibility to ask questions

Learning objectives:
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

Requirements:
Wiling SPO 2007 (B.Sc.)
The course Material Science I [21760] has to be completed beforehand.
Wiling (M.Sc.)
The course Material Science I [21760] has to be completed beforehand.

Workload:
The workload for the lecture is 120 h per semester and consists of the presence during the lecture (30 h) as well as preparation and rework time at home (30 h) and preparation time for the oral exam (60 h).

Literature
Vorlesungsskriptum; Übungblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe. 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe. 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
8.246 Course: Systems of Remote Sensing, Prerequisite [T-BGU-101637]

Responsible:
Prof. Dr. Jan Cermak
Prof. Dr.-Ing. Stefan Hinz
Dr.-Ing. Uwe Weidner

Organisation:
KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
M-WIWI-104838 - Introduction to Natural Hazards and Risk Analysis

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024 6020242 Systems of Remote Sensing, Exercise</td>
<td>1 SWS</td>
<td>Practice / Bork-Unkelbach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- ❌ Cancelled

Prerequisites
None

Recommendation
None

Annotation
None
8.247 Course: Tactical and Operational Supply Chain Management [T-WIWI-102714]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101413 - Applications of Operations Research
- M-WIWI-101421 - Supply Chain Management
- M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Content</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>3 SWS</td>
<td>Tactical and operational SCM</td>
<td>Lecture / 🗣️</td>
<td>Each summer term</td>
<td>Nickel</td>
</tr>
<tr>
<td>ST 2024</td>
<td>1.5 SWS</td>
<td>Übungen zu Taktisches und operatives SCM</td>
<td>Practice / 🗣️</td>
<td>Each summer term</td>
<td>Pomes, Linner, Hoffmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Content</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>1 SWS</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>ST 2024</td>
<td>1 SWS</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

Depending on further pandemic developments, the exam will be offered either as an open-book exam, or as a written exam (60 min).

The exam takes place in every semester.

Prerequisite for admission to examination is the successful completion of the online assessments.

Prerequisites

Prerequisite for admission to examination is the successful completion of the online assessments.

Recommendation

None

Annotation

The lecture is held in every summer term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Tactical and operational SCM

2550486, SS 2024, 3 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot. The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in detail.

Passing the online exercise is a prerequisite for admission to the exam.
Literature
Weiterführende Literatur

- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005
8.248 Course: Team Project Management and Technology [T-WIWI-110968]

Responsible: Prof. Dr. Martin Klarmann
Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105440 - Team Project Management and Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Title</th>
<th>Grade</th>
<th>Dates</th>
<th>Type</th>
<th>Examiners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2514040</td>
<td>Teamprojekt Wirtschaft und Technologie - Critical Information Infrastructures</td>
<td>Project (P / 📥)</td>
<td>Sunyaev, Kannengießer, Jin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2571176</td>
<td>Team Project Management and Technology</td>
<td>6 SWS</td>
<td>Project (P / 🧩)</td>
<td>Klarmann, Mädche</td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2514040</td>
<td>Teamprojekt Wirtschaft und Technologie - Critical Information Infrastructures</td>
<td>Project (P / 📥)</td>
<td>Sunyaev, Dehling, Goram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>2571176</td>
<td>Teamprojekt Wirtschaft und Technologie</td>
<td>Project (P / 🧩)</td>
<td>Klarmann, Mädche</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Title</th>
<th>Examiners</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900207</td>
<td>Team Project Management and Technology</td>
<td>Mädche, Klarmann</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900048</td>
<td>Team Project Management and Technology</td>
<td>Klarmann, Mädche</td>
</tr>
</tbody>
</table>

Legend: 📥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Alternative exam assessment. The basis for grading is the documents produced, the presentations during the course of the project, the artifact to be produced (e.g. algorithm, method, model, software, component) and the final presentation.
8.249 Course: Team Project Management and Technology (BUS/ENG) [T-WIWI-110977]

Responsible: Prof. Dr. Martin Klarmann
Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105447 - Team Project Management and Technology (BUS/ENG)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2571176</td>
<td>Team Project Management and Technology</td>
<td>6 SWS</td>
<td>Project (P / 🧩)</td>
<td>Klarmann, Mädche</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2571176</td>
<td>Teamprojekt Wirtschaft und Technologie</td>
<td>Project (P / 🧩)</td>
<td>Klarmann, Mädche</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900208</td>
<td>Team Project Management and Technology (BUS/ENG)</td>
<td>Mädche, Klarmann</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900050</td>
<td>Team Project Management and Technology (BUS/ENG)</td>
<td>Klarmann, Mädche</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate
Alternative exam assessment. The basis for grading is the documents produced, the presentations during the course of the project, the artifact to be produced (e.g. algorithm, method, model, software, component) and the final presentation.
8.250 Course: Tires and Wheel Development for Passenger Cars [T-MACH-102207]

Responsible: Prof. Dr.-Ing. Günter Leister

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101265 - Vehicle Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2114845</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Leister</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Leister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Leister</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📠 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Prerequisites

none

Below you will find excerpts from events related to this course:

V Tires and Wheel Development for Passenger Cars

2114845, SS 2024, 2 SWS, Language: German, Open in study portal

Content

1. The role of the tires and wheels in a vehicle
2. Geometry of Wheel and tire, Package, load capacity and endurance, Book of requirement
3. Mobility strategy, Minispare, runflat systems and repair kit.
4. Project management: Costs, weight, planning, documentation
5. Tire testing and tire properties
6. Wheel technology including Design and manufacturing methods, Wheeltesting
7. Tire pressure: Indirect and direct measuring systems
8. Tire testing subjective and objective

Learning Objectives:

The students are informed about the interactions of tires, wheels and chassis. They have an overview of the processes regarding the tire and wheel development. They have knowledge of the physical relationships.

Organizational issues

Voraussichtliche Termine, nähere Informationen und eventuelle Terminänderungen:

siehe Institutshomepage.

Literature

Manuskript zur Vorlesung

Manuskript to the lecture
8.251 Course: Topics in Human Resource Management [T-WIWI-111858]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101513 - Human Resources and Organizations
M-WIWI-105928 - HR Management & Digital Workplace

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2024 | 2573015 | Topics in Human Resource Management | 2 SWS | Colloquium (K/🗣) Nieken, Mitarbeiter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Canceled

Competence Certificate

Alternative exam assessment.

The grade is made up of the presentation of a given research topic and active participation in the discussions in the course. The weighting depends on the course and will be announced at the beginning of the course.

Prerequisites

This course cannot be combined with T-WIWI-102871 "Problem Solving, Communication and Leadership".

Recommendation

We recommend visiting the course "Human Resource Management" before taking this course. The course is strongly recommended for students interested in empirical research in the areas HRM, personnel economics, and leadership.

Below you will find excerpts from events related to this course:

Topics in Human Resource Management

2573015, SS 2024, 2 SWS, Language: German, [Open in study portal](#)

Colloquium (KOL)

On-Site

Content

The students will discuss and analyze selected research papers in the areas HRM, personnel economics, and leadership. The students will present research papers and discuss research methods and designs as well as content.

Aim

The student

- Looks into current research topics in the areas HRM, personnel economics, and leadership.
- Analyzes research papers in detail and evaluates the research outcomes.
- Trains their presentation skills.
- Learns to critically evaluate research methods and trains the scientific discussion culture.
- Gains deeper knowledge in the area of HRM.
- Learns to evaluate research designs and takes into account the ethical dimension of research.

Notes

Due to the interactive nature of the course, the number of participants is limited. If you are interested, please contact Prof. Nieken by email.

Workload

The total workload for this course is approximately 90 hours.

- Lecture: 30 hours
- Preparation: 45 hours
- Exam preparation: 15 hours

Literature

Selected research papers
Organizational issues
Geb. 05.20, Raum 2A-12.1
Course: Vehicle Comfort and Acoustics I [T-MACH-105154]

Responsible: Prof. Dr. Frank Gauterin
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101264 - Handling Characteristics of Motor Vehicles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2113806 | Vehicle Comfort and Acoustics I | 2 SWS | Lecture / Online | Gauterin |
| ST 2024 | 2114856 | Vehicle Ride Comfort & Acoustics I | 2 SWS | Lecture / On-Site | Gauterin |

Exams

| WT 23/24 | 76-T-MACH-105154 | Vehicle Comfort and Acoustics I | Gauterin |
| ST 2024 | 76-T-MACH-105154 | Vehicle Comfort and Acoustics I | Gauterin |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Oral Examination

Duration: approx. 30 to 40 minutes

Auxiliary means: none

Prerequisites
Can not be combined with lecture T-MACH-102206

Below you will find excerpts from events related to this course:

Vehicle Comfort and Acoustics I
2113806, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content
1. Perception of noise and vibrations
3. Fundamentals of acoustics and vibrations
3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations
4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:
The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chassis regarding driving comfort and acoustic under consideration of goal conflicts.

Organizational issues
Das Vorlesungsmaterial wird auf ILIAS bereitgestellt. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/PasswoerterILias/

Kann nicht mit der Veranstaltung [2114856] kombiniert werden.
Can not be combined with lecture [2114856]
Literature
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

Vehicle Ride Comfort & Acoustics I
2114856, SS 2024, 2 SWS, Language: English, Open in study portal

Content
1. Perception of noise and vibrations
2. Fundamentals of acoustics and vibrations
3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations
4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Learning Objectives:
The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings.
They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chassis regarding driving comfort and acoustic under consideration of goal conflicts.

Organizational issues
the lectures are available as a video stream.
You will find the lecture material and the videos on ILIAS. To get the ILIAS password, refer to https://fast-web-01.fast.kit.edu/PasswoerterIlias/
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]

Literature
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
8.253 Course: Vehicle Comfort and Acoustics II [T-MACH-105155]

Responsible: Prof. Dr. Frank Gauterin

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101264 - Handling Characteristics of Motor Vehicles

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2024</td>
<td>2114825</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Gauterin</td>
</tr>
<tr>
<td>ST 2024</td>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>Gauterin</td>
</tr>
<tr>
<td>ST 2024</td>
<td>76-T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Oral Examination

Duration: approx. 30 to 40 minutes

Auxiliary means: none

Prerequisites

Can not be combined with lecture T-MACH-102205

Below you will find excerpts from events related to this course:

Vehicle Comfort and Acoustics II

2114825, SS 2024, 2 SWS, Language: German, Open in study portal
Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Learning Objectives:
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Organizational issues
Die Vorlesung wird als Videostream zur Verfügung gestellt. Sie finden den Videostream und das Vorlesungsmaterial auf ILIAS. Das ILIAS-Passwort erhalten Sie unter https://fast-web-01.fast.kit.edu/Passwoerterllias/

Kann nicht mit der Veranstaltung [2114857] kombiniert werden.

Can not be combined with lecture [2114857]

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

Vehicle Ride Comfort & Acoustics II
2114857, SS 2024, 2 SWS, Language: English, Open in study portal
Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Learning Objectives:
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Organizational issues
the lectures are available as a video stream.
You will find the lecture material and the videos on ILIAS. To get the ILIAS password, refer to https://fast-web-01.fast.kit.edu/PasswoerterIlias/
Can not be combined with lecture [2114825].

Literature
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
8.254 Course: Virtual Reality Practical Course [T-MACH-102149]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2123375</td>
<td>Virtual Reality Practical Course</td>
<td>3 SWS</td>
<td>Ovtcharova, Häfner</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>76-T-MACH-102149</td>
<td>Virtual Reality Practical Course</td>
<td>Project (P / 🗣️)</td>
<td>Ovtcharova, Häfner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
Assessment of another type (graded)

Prerequisites
None

Annotation
Number of participants is limited

Below you will find excerpts from events related to this course:

Virtual Reality Practical Course
2123375, WS 23/24, 3 SWS, Language: German/English, [Open in study portal](#)

Content
- Introduction in Virtual Reality (hardware, software, applications)
- Exercises in the task specific software systems
- Autonomous project work in the area of Virtual Reality in small groups

Organizational issues
Siehe Homepage zur Lehrveranstaltung

Literature
Keine / None
8.255 Course: Welfare Economics [T-WIWI-102610]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Exam Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900129</td>
<td>Welfare Economics</td>
<td>Puppe</td>
</tr>
<tr>
<td>ST 2024</td>
<td>7900257</td>
<td>Welfare Economics</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Competence Certificate
Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites
The course *Economics I: Microeconomics [2610012]* has to be completed beforehand.

Recommendation
None

Annotation
The course only takes place every second summer semester, the next course is planned for summer semester 2021.
Course: Workshop Mechatronical Systems and Products (mach/etit/wiwi) [T-MACH-112648]

Responsible:
Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Sven Matthiesen

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-106236 - Mechatronic Product Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Title</th>
<th>WS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2145162</td>
<td>Workshop Mechatronical Systems and Products</td>
<td>2</td>
<td>Practical course /</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Teltschik, Matthiesen, Hohmann</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- CANCELLED

Prerequisites

None