EN

Modul

Stochastische Simulation [M-MATH-106053]

Leistungspunkte
5
Turnus
Jedes Wintersemester
Dauer
1 Semester
Sprache
Englisch
Level
4
Version
1

Verantwortung

Einrichtung

  • KIT-Fakultät für Mathematik

Bestandteil von

Teilleistungen

Identifier Name LP
T-MATH-112242 Stochastische Simulation 5

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 Minuten).

Qualifikationsziele

After successfully taking part in the module's classes and the exam, students will be acquainted with sampling-based computational tools used to analyze systems with uncertainty arising in engineering,
physics, chemistry, and economics. Specifically, by the end of this course, students will be able to analyze the convergence of sampling algorithms and implement the discussed sampling methods for different
stochastic processes as computer codes. Understanding the advantages and disadvantages of different sampling-based methods, the students can, in particular, choose appropriate stochastic simulation
techniques and propose efficient sampling methods for a specific stochastic problem. In particular, they can name and discuss essential theoretical concepts, and understand the structure of the sampling-based computational methods. Finally, the course prepares students to write a thesis in the field of Uncertainty Quantification.

Voraussetzungen

Keine

Inhalt

The course covers mathematical concepts and computational tools used to analyze systems with uncertainty arising across various application domains. First, we will address stochastic modelling strategies to represent uncertainty in such systems. Then we will discuss sampling-based methods to assess uncertain system outputs via stochastic simulation techniques. The focus of this course will be on
the theoretical foundations of the discussed techniques, as well as their methodological realization as efficient computational tools. Topics covered include:

  • Random variable generation
  • Simulation of random processes
  • Simulation of Gaussian random fields
  • Monte Carlo method; output analysis
  • Variance reduction techniques
  • Rare event simulations
  • Quasi Monte Carlo methods
  • Markov Chain Monte Carlo methods (Metropolis-Hasting, Gibbs sampler)

Empfehlungen

Die Inhalte der Module 'M-MATH-101321 - Einführung in die Stochastik' und 'M-MATH-103214 – Numerische Mathematik 1+2' werden empfohlen.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

Präsenzzeit: 60 Stunden

  • Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

  • Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
  • Bearbeitung von Übungsaufgaben
  • Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
  • Vorbereitung auf die studienbegleitende Modulprüfung